Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Psychiatry ; 180(4): 285-293, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36856707

ABSTRACT

OBJECTIVE: Family history is an established risk factor for mental illness. The authors sought to investigate whether polygenic scores (PGSs) can complement family history to improve identification of risk for major mood and psychotic disorders. METHODS: Eight cohorts were combined to create a sample of 1,884 participants ages 2-36 years, including 1,339 offspring of parents with mood or psychotic disorders, who were prospectively assessed with diagnostic interviews over an average of 5.1 years. PGSs were constructed for depression, bipolar disorder, anxiety, attention deficit hyperactivity disorder (ADHD), schizophrenia, neuroticism, subjective well-being, p factor, and height (as a negative control). Cox regression was used to test associations between PGSs, family history of major mental illness, and onsets of major mood and psychotic disorders. RESULTS: There were 435 onsets of major mood and psychotic disorders across follow-up. PGSs for neuroticism (hazard ratio=1.23, 95% CI=1.12-1.36), schizophrenia (hazard ratio=1.15, 95% CI=1.04-1.26), depression (hazard ratio=1.11, 95% CI=1.01-1.22), ADHD (hazard ratio=1.10, 95% CI=1.00-1.21), subjective well-being (hazard ratio=0.90, 95% CI=0.82-0.99), and p factor (hazard ratio=1.14, 95% CI=1.04-1.26) were associated with onsets. After controlling for family history, neuroticism PGS remained significantly positively associated (hazard ratio=1.19, 95% CI=1.08-1.31) and subjective well-being PGS remained significantly negatively associated (hazard ratio=0.89, 95% CI=0.81-0.98) with onsets. CONCLUSIONS: Neuroticism and subjective well-being PGSs capture risk of major mood and psychotic disorders that is independent of family history, whereas PGSs for psychiatric illness provide limited predictive power when family history is known. Neuroticism and subjective well-being PGSs may complement family history in the early identification of persons at elevated risk.


Subject(s)
Bipolar Disorder , Psychotic Disorders , Schizophrenia , Humans , Child, Preschool , Child , Adolescent , Young Adult , Adult , Psychotic Disorders/diagnosis , Psychotic Disorders/genetics , Bipolar Disorder/diagnosis , Bipolar Disorder/genetics , Bipolar Disorder/psychology , Schizophrenia/diagnosis , Schizophrenia/genetics , Parents , Risk Factors
2.
Bone ; 153: 116154, 2021 12.
Article in English | MEDLINE | ID: mdl-34403754

ABSTRACT

Age-associated osteoporosis is widely accepted as involving the disruption of osteogenic stem cell populations and their functioning. Maintenance of the local bone marrow (BM) microenvironment is critical for regulating proliferation and differentiation of the multipotent BM mesenchymal stromal/stem cell (BMSC) population with age. The potential role of microRNAs (miRNAs) in modulating BMSCs and the BM microenvironment has recently gained attention. However, miRNAs expressed in rapidly isolated BMSCs that are naïve to the non-physiologic standard tissue culture conditions and reflect a more accurate in vivo profile have not yet been reported. Here we directly isolated CD271 positive (+) BMSCs within hours from human surgical BM aspirates without culturing and performed microarray analysis to identify the age-associated changes in BMSC miRNA expression. One hundred and two miRNAs showed differential expression with aging. Target prediction and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that the up-regulated miRNAs targeting genes in bone development pathways were considerably enriched. Among the differentially up-regulated miRNAs the novel passenger strand miR-29b-1-5p was abundantly expressed as a mature functional miRNA with aging. This suggests a critical arm-switching mechanism regulates the expression of the miR-29b-1-5p/3p pair shifting the normally degraded arm, miR-29b-1-5p, to be the dominantly expressed miRNA of the pair in aging. The normal guide strand miR-29b-1-3p is known to act as a pro-osteogenic miRNA. On the other hand, overexpression of the passenger strand miR-29b-1-5p in culture-expanded CD271+ BMSCs significantly down-regulated the expression of stromal cell-derived factor 1 (CXCL12)/ C-X-C chemokine receptor type 4 (SDF-1(CXCL12)/CXCR4) axis and other osteogenic genes including bone morphogenetic protein-2 (BMP-2) and runt-related transcription factor 2 (RUNX2). In contrast, blocking of miR-29b-1-5p function using an antagomir inhibitor up-regulated expression of BMP-2 and RUNX2 genes. Functional assays confirmed that miR-29b-1-5p negatively regulates BMSC osteogenesis in vitro. These novel findings provide evidence of a pathogenic anti-osteogenic role for miR-29b-1-5p and other miRNAs in age-related defects in osteogenesis and bone regeneration.


Subject(s)
Mesenchymal Stem Cells , MicroRNAs , Bone Marrow Cells , Cell Differentiation/genetics , Humans , MicroRNAs/genetics , Osteogenesis/genetics
3.
Bone Rep ; 12: 100270, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32395570

ABSTRACT

Mechanisms leading to age-related reductions in bone formation and subsequent osteoporosis are still incompletely understood. We recently demonstrated that kynurenine (KYN), a tryptophan metabolite, accumulates in serum of aged mice and induces bone loss. Here, we report on novel mechanisms underlying KYN's detrimental effect on bone aging. We show that KYN is increased with aging in murine bone marrow mesenchymal stem cells (BMSCs). KYN reduces bone formation via modulating levels of CXCL12 and its receptors as well as histone deacetylase 3 (Hdac3). BMSCs responded to KYN by significantly decreasing mRNA expression levels of CXCL12 and its cognate receptors, CXCR4 and ACKR3, as well as downregulating osteogenic gene RUNX2 expression, resulting in a significant inhibition in BMSCs osteogenic differentiation. KYN's effects on these targets occur by increasing regulatory miRNAs that target osteogenesis, specifically miR29b-1-5p. Thus, KYN significantly upregulated the anti-osteogenic miRNA miR29b-1-5p in BMSCs, mimicking the up-regulation of miR-29b-1-5p in human and murine BMSCs with age. Direct inhibition of miR29b-1-5p by antagomirs rescued CXCL12 protein levels downregulated by KYN, while a miR29b-1-5p mimic further decreased CXCL12 levels. KYN also significantly downregulated mRNA levels of Hdac3, a target of miR-29b-1-5p, as well as its cofactor NCoR1. KYN is a ligand for the aryl hydrocarbon receptor (AhR). We hypothesized that AhR mediates KYN's effects in BMSCs. Indeed, AhR inhibitors (CH-223191 and 3',4'-dimethoxyflavone [DMF]) partially rescued secreted CXCL12 protein levels in BMSCs treated with KYN. Importantly, we found that treatment with CXCL12, or transfection with an miR29b-1-5p antagomir, downregulated the AhR mRNA level, while transfection with miR29b-1-5p mimic significantly upregulated its level. Further, CXCL12 treatment downregulated IDO, an enzyme responsible for generating KYN. Our findings reveal novel molecular pathways involved in KYN's age-associated effects in the bone microenvironment that may be useful translational targets for treating osteoporosis.

SELECTION OF CITATIONS
SEARCH DETAIL
...