Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 23(39): 22344-22351, 2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34604879

ABSTRACT

Urea is a molecule of great interest in chemistry and biology. In particular, it is considered a key building block in prebiotic chemistry on Earth. The hypothesis of its possible exogenous origin has been reinforced after the recent detection of this molecule in the interstellar medium, where it is believed to form in the ice mantles of dust grains. In this work the infrared spectra of urea ices and urea:H2O ice mixtures have been studied both experimentally and theoretically. Urea ices were generated by vapour deposition at temperatures between 10 K and 270 K. It was found that an amorphous phase is formed at temperatures below 200 K. A theoretical modelling of crystalline urea and of a tentative amorphous urea solid phase, as well as of amorphous urea:H2O ice mixtures, has been performed. The corresponding infrared spectra were simulated with density functional theory. The main spectral features observed in the various solid samples are interpreted with the help of the theoretical results. Infrared band strengths are also provided for amorphous and crystalline urea. The infrared spectroscopic information given in this work is expected to be useful for the detection and quantification of urea in astrophysical ices.

2.
Astrophys J ; 906(1)2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33594293

ABSTRACT

Silicon is present in interstellar dust grains, meteorites and asteroids, and to date thirteen silicon-bearing molecules have been detected in the gas-phase towards late-type stars or molecular clouds, including silane and silane derivatives. In this work, we have experimentally studied the interaction between atomic silicon and hydrogen under physical conditions mimicking those at the atmosphere of evolved stars. We have found that the chemistry of Si, H and H2 efficiently produces silane (SiH4), disilane (Si2H6) and amorphous hydrogenated silicon (a-Si:H) grains. Silane has been definitely detected towards the carbon-rich star IRC+10216, while disilane has not been detected in space yet. Thus, based on our results, we propose that gas-phase reactions of atomic Si with H and H2 are a plausible source of silane in C-rich AGBs, although its contribution to the total SiH4 abundance may be low in comparison with the suggested formation route by catalytic reactions on the surface of dust grains. In addition, the produced a-Si:H dust analogs decompose into SiH4 and Si2H6 at temperatures above 500 K, suggesting an additional mechanism of formation of these species in envelopes around evolved stars. We have also found that the exposure of these dust analogs to water vapor leads to the incorporation of oxygen into Si-O-Si and Si-OH groups at the expense of SiH moieties, which implies that, if this type of grains are present in the interstellar medium, they will be probably processed into silicates through the interaction with water ices covering the surface of dust grains.

3.
Astrophys J ; 895(2)2020 Jun 01.
Article in English | MEDLINE | ID: mdl-33154601

ABSTRACT

Interstellar carbonaceous dust is mainly formed in the innermost regions of circumstellar envelopes around carbon-rich asymptotic giant branch (AGB) stars. In these highly chemically stratified regions, atomic and diatomic carbon, along with acetylene are the most abundant species after H2 and CO. In a previous study, we addressed the chemistry of carbon (C and C2) with H2 showing that acetylene and aliphatic species form efficiently in the dust formation region of carbon-rich AGBs whereas aromatics do not. Still, acetylene is known to be a key ingredient in the formation of linear polyacetylenic chains, benzene and polycyclic aromatic hydrocarbons (PAHs), as shown by previous experiments. However, these experiments have not considered the chemistry of carbon (C and C2) with C2H2. In this work, by employing a sufficient amount of acetylene, we investigate its gas-phase interaction with atomic and diatomic carbon. We show that the chemistry involved produces linear polyacetylenic chains, benzene and other PAHs, which are observed with high abundances in the early evolutionary phase of planetary nebulae. More importantly, we have found a non-negligible amount of pure and hydrogenated carbon clusters as well as aromatics with aliphatic substitutions, both being a direct consequence of the addition of atomic carbon. The incorporation of alkyl substituents into aromatics can be rationalized by a mechanism involving hydrogen abstraction followed by methyl addition. All the species detected in gas phase are incorporated into the nanometric sized dust analogues, which consist of a complex mixture of sp, sp2 and sp3 hydrocarbons with amorphous morphology.

4.
Nat Astron ; 4(1): 97-105, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31934643

ABSTRACT

Evolved stars are a foundry of chemical complexity, gas and dust that provides the building blocks of planets and life, and dust nucleation first occurs in their photosphere. Despite their importance, the circumstellar regions enveloping these stars remain hidden to many observations, thus dust formation processes are still poorly understood. Laboratory astrophysics provides complementary routes to unveil these chemical processes, but most experiments rely on combustion or plasma decomposition of molecular precursors under physical conditions far removed from those in space. We have built an ultra-high vacuum machine combining atomic gas aggregation with advanced in-situ characterization techniques to reproduce and characterize the bottom-up dust formation process. We show that carbonaceous dust analogues formed from low-pressure gas-phase condensation of C atoms in a hydrogen atmosphere, in a C/H2 ratio similar to that reported for evolved stars, leads to the formation of amorphous C nanograins and aliphatic C-clusters. Aromatic species or fullerenes do not form effectively under these conditions, raising implications for the revision of the chemical mechanisms taking place in circumstellar envelopes.

5.
J Phys Chem A ; 123(38): 8135-8147, 2019 Sep 26.
Article in English | MEDLINE | ID: mdl-31461278

ABSTRACT

The ionic polymerization of acetylene in cold plasmas of C2H2/He and C2H2/Ar has been experimentally studied and modeled in radio frequency (rf) discharges with conditions selected to avoid particle formation. Steady-state distributions of positive and negative ions were measured with mass spectrometry. All the measured distributions are dominated by ions with an even number of carbon atoms, reflecting the characteristic polyyne structures typical for the polymerization of acetylene. The distributions show a monotonic decrease in intensity from ions with two carbon atoms until the highest number of atoms detected. For cations, the distributions extend until 12 carbon atoms. The anion distributions extend further, and negative ions with 20 C atoms are observed in the C2H2/Ar plasma. From the measured mass spectra it is not possible to decide on the possible presence of aromatic species in ions with more than six carbon atoms. A simple model assuming a homogeneous discharge was used to describe the plasma kinetics and could account for the measured ion distributions with reasonable values of charge density and electron temperature. The results of this work stress the important role of the vinylidene anion and indicate that Ar and He do not have much influence on the carbon chemistry.

6.
Phys Chem Chem Phys ; 19(2): 1352-1360, 2017 Jan 04.
Article in English | MEDLINE | ID: mdl-27975091

ABSTRACT

A theoretical study of the structure and mid infrared (IR) spectra of interstellar hydrocarbon dust analogs is presented, based on DFT calculations of amorphous solids. The basic molecular structures for these solids are taken from two competing literature models. The first model considers small aromatic units linked by aliphatic chains. The second one assumes a polyaromatic core with hydrogen and methyl substituents at the edges. The calculated spectra are in reasonably good agreement with those of aliphatic-rich and graphitic-rich samples of hydrogenated amorphous carbon (HAC) generated in our laboratory. The theoretical analysis allows the assignment of the main vibrations in the HAC spectra and shows that there is a large degree of mode mixing. The calculated spectra show a marked dependence on the density of the model solids, which evinces the strong influence of the environment on the strengths of the vibrational modes. The present results indicate that the current procedure of estimating the hydrogen and graphitic content of HAC samples through the decomposition of IR features into vibrational modes of individual functional groups is problematic owing to the mentioned mode mixing and to the difficulty of assigning reliable and unique band strengths to the various molecular vibrations. Current band strengths from the literature might overestimate polyaromatic structures. Comparison with astronomical observations suggests that the average structure of carbonaceous dust in the diffuse interstellar medium lies probably in between those of the two models considered, though closer to the more aliphatic structure.

7.
Astrophys J ; 831(1)2016 11 01.
Article in English | MEDLINE | ID: mdl-28133388

ABSTRACT

The effects of cosmic rays on the carriers of the interstellar 3.4 µm absorption band have been investigated in the laboratory. This band is attributed to stretching vibrations of CH3 and CH2 in carbonaceous dust. It is widely observed in the diffuse interstellar medium (ISM), but disappears in dense clouds. Destruction of CH3 and CH2 by cosmic rays could become relevant in dense clouds, shielded from the external ultraviolet field. For the simulations, samples of hydrogenated amorphous carbon (a-C:H) have been irradiated with 5 keV electrons. The decay of the band intensity vs electron fluence reflects a-C:H dehydrogenation, which is well described by a model assuming that H2 molecules, formed by the recombination of H atoms liberated through CH bond breaking, diffuse out of the sample. The CH bond destruction rates derived from the present experiments are in good accordance with those from previous ion irradiation experiments of HAC. The experimental simplicity of electron bombardment has allowed the use of higher energy doses than in the ion experiments. The effects of cosmic rays on the aliphatic components of cosmic dust are found to be small. The estimated cosmic ray destruction times for the 3.4 µm band carriers lie in the 108 yr range and cannot account for the disappearance of this band in dense clouds, which have characteristic lifetimes of 3 × 107 yr. The results invite a more detailed investigation of the mechanisms of CH bond formation and breaking in the intermediate region between diffuse and dense clouds.

8.
Phys Chem Chem Phys ; 17(43): 28966-76, 2015 Nov 21.
Article in English | MEDLINE | ID: mdl-26456640

ABSTRACT

A theoretical model of hydrogenated amorphous carbon (HAC) is developed and applied to study the interaction of glycine with HAC surfaces at astronomical temperatures. Two models with different H content are tried for the HAC surface. The theory is applied at the Density Functional Theory (DFT) level, including a semiempirical dispersion correlation potential, d-DFT or Grimme DFT-D2. The level of theory is tested on glycine adsorption on a Si(001) surface. Crystalline glycine is also studied in its two stable phases, α and ß, and the metastable γ phase. For the adsorption on Si or HAC surfaces, molecular glycine is introduced in the neutral and zwitterionic forms, and the most stable configurations are searched. All theoretical predictions are checked against experimental observations. HAC films are prepared by plasma enhanced vapor deposition at room temperature. Glycine is deposited at 20 K into a high vacuum, cold temperature chamber, to simulate astronomical conditions. Adsorption takes place through the acidic group COO(-) and when several glycine molecules are present, they form H-bond chains among them. Comparison between experiments and predictions suggests that a possible way to improve the theoretical model would require the introduction of aliphatic chains or a polycyclic aromatic core. The lack of previous models to study the interaction of amino-acids with HAC surfaces provides a motivation for this work.


Subject(s)
Carbon/chemistry , Glycine/chemistry , Models, Theoretical , Adsorption , Hydrogen Bonding , Hydrogenation , Silicon/chemistry , Surface Properties , Temperature
9.
Faraday Discuss ; 168: 267-85, 2014.
Article in English | MEDLINE | ID: mdl-25302385

ABSTRACT

The effect of UV photon (120-200 nm) and electron (2 keV) irradiation of analogues of interstellar carbonaceous dust and of glycine were investigated by means of IR spectroscopy. Films of hydrogenated amorphous carbon (HAC), taken as dust analogues, were found to be stable under UV photon and electron bombardment. High fluences of photons and electrons, of the order of 10(19) cm(-2), were needed for a film depletion of a few percent. UV photons were energetically more effective than electrons for depletion and led to a certain dehydrogenation of the HAC samples, whereas electrons led seemingly to a gradual erosion with no appreciable changes in the hydrocarbon structure. The rates of change observed may be relevant over the lifetime of a diffuse cloud, but cannot account for the rapid changes in hydrocarbon IR bands during the evolution of some proto-planetary nebulae. Glycine samples under the same photon and electron fluxes decay at a much faster rate, but tend usually to an equilibrium value different from zero, especially at low temperatures. Reversible reactions re-forming glycine, or the build-up of less transparent products, could explain this behavior. CO2 and methylamine were identified as UV photoproducts. Electron irradiation led to a gradual disappearance of the glycine layers, also with formation of CO2. No other reaction products were clearly identified. The thicker glycine layers (a few hundred nm) were not wholly depleted, but a film of the order of the electron penetration depth (80 nm), was totally destroyed with an electron fluence of -1 x 10(18) cm(-2). A 60 nm ice layer on top of glycine provided only partial shielding from the 2 keV electrons. From an energetic point of view, 2 keV electrons are less efficient than UV photons and, according to literature data, much less efficient than MeV protons for the destruction of glycine. The use of keV electrons to simulate effects of cosmic rays on analogues of interstellar grains should be taken with care, due to the low penetration depths of electrons in many samples of interest.

10.
RSC Adv ; 4(107): 62030-62041, 2014 Nov 03.
Article in English | MEDLINE | ID: mdl-26702354

ABSTRACT

The recent discovery of ArH+ in the interstellar medium has awakened the interest in the chemistry of this ion. In this work, the ion-molecule kinetics of cold plasmas of Ar/H2 is investigated in glow discharges spanning the whole range of [H2]/([H2]+[Ar]) proportions for two pressures, 1.5 and 8 Pa. Ion concentrations are determined by mass spectrometry, and electron temperatures and densities, with Langmuir probes. A kinetic model is used for the interpretation of the results. The selection of experimental conditions evinces relevant changes with plasma pressure in the ion distributions dependence with the H2 fraction, particularly for the major ions: Ar+, ArH+ and H3+. At 1.5 Pa, ArH+ prevails for a wide interval of H2 fractions: 0.3<[H2]/([H2]+[Ar])<0.7. Nevertheless, a pronounced displacement of the ArH+ maximum towards the lowest H2 fractions is observed at 8 Pa, in detriment of Ar+, which becomes restricted to very small [H2]/([H2]+[Ar]) ratios, whereas H3+ becomes dominant for all [H2]/([H2]+[Ar]) > 0.1. The analysis of the data with the kinetic model allows the identification of the sources and sinks of the major ions over the whole range of experimental conditions sampled. Two key factors turn out to be responsible for the different ion distributions observed: the electron temperature, which determines the rate of Ar+ formation and thus of ArH+, and the equilibrium ArH+ + H2 ⇄ H3+ + Ar, which can be strongly dependent of the degree of vibrational excitation of H3+. The results are discussed and compared with previously published data on other Ar/H2 plasmas.

11.
Phys Chem Chem Phys ; 16(8): 3371-80, 2014 Feb 28.
Article in English | MEDLINE | ID: mdl-24162236

ABSTRACT

Carbon dioxide and ammonia are two of the most abundant species in astrophysical media, where they can react in the solid phase under certain conditions. This contribution presents a study of this reaction both in the presence of water and for anhydrous samples. It is shown that after deposition at 15 K, the reaction can start by warming the deposit, and the process continues on up to a temperature of 220 K. Reaction products are studied using infrared spectroscopy and mass spectrometry. For anhydrous samples, a 2 : 1 stoichiometry mixture of NH3 : CO2 gives the highest yield of products. The reaction is favored when a small amount of water is present, which enables ammonia and carbon dioxide molecules to collide within the pores and channels of the amorphous water solid. Large concentration of water, on the other hand, hampers such collisions. The main reaction product is found to be ammonium carbamate, but also carbamic acid is formed, and, in the presence of water, ammonium bicarbonate is produced as well. Theoretical calculations are carried out to provide the basis for the assignment of the spectra. Some of the experiments presented in this contribution consist of the generation of a compact water ice matrix where the carbamate and ammonium ions are embedded. If such a system was found in astrophysical media, it is shown that the ammonium ion could not be detected, whereas two infrared features of the carbamate ion in the 1040 to 1115 cm(-1) (9 to 9.6 µm) region could enable the observation of this species.

12.
Phys Chem Chem Phys ; 15(5): 1699-706, 2013 Feb 07.
Article in English | MEDLINE | ID: mdl-23247609

ABSTRACT

The ion-molecule chemistry of the astronomically relevant H(3)(+), N(2)H(+), and NH(4)(+) ions has been investigated in the weakly ionized cold plasmas formed in glow discharges of H(2) with small amounts of nitrogen. The concentrations of neutrals and ions were determined by means of mass spectrometry, and electron temperatures and densities were measured using Langmuir probes. A kinetic model was used for the interpretation of the results. The selection of experimental conditions allowed the generation of ion distributions with different relative weights of the mentioned protonated species and the model calculations showed that the observed ion distributions can be explained by the occurrence of a very efficient H(3)(+) → N(2)H(+) → NH(4)(+) proton transfer chain. The NH(4)(+) ion, which is dominant in most of the cases studied, is ultimately derived from the small amount of NH(3) produced at the reactor walls. NH(4)(+) tends to be preponderant in the ion distributions even for NH(3) density ratios as low as 1%. Due to the high proton affinity of ammonia, this molecule is readily transformed into NH(4)(+) upon collision with H(3)(+) or N(2)H(+). It is conjectured that these results can be extrapolated to most of the small molecules predominant in the interstellar medium, which also have proton affinities lower than that of NH(3). The results support the predictions of astrochemical models indicating that NH(4)(+) could be a preponderant ion in some warm environments like hot cores, where NH(3) molecules have desorbed from the grains.

13.
Phys Chem Chem Phys ; 14(30): 10595-602, 2012 Aug 14.
Article in English | MEDLINE | ID: mdl-22752009

ABSTRACT

An investigation of porosity and isothermal crystallization kinetics of amorphous ice produced either by background water vapour deposition (ASW) or by hyperquenching of liquid droplets (HGW) is presented. These two types of ice are relevant for astronomical ice research (Gálvez et al., Astrophys. J., 2010, 724, 539) and are studied here for the first time under comparable experimental conditions. From CH(4) isothermal adsorption experiments at 40 K, surface areas of 280 ± 30 m(2) g(-1) for the ASW deposits and of 40 ± 12 m(2) g(-1) for comparable HGW samples were obtained. The crystallization kinetics was studied at 150 K by following the evolution of the band shape of the OD stretching vibration in HDO doped ASW and HGW samples generated at 14 K, 40 K and 90 K. Comparable rate constants of ∼7 × 10(-4) s(-1) were obtained in all cases. However a significant difference was found between the n Avrami parameter of the samples generated at 14 K (n∼ 1) and that of the rest (n > 2). This result hints at the possible existence of a structurally different form of amorphous ice for very low generation temperatures, already suggested in previous literature works.

14.
Phys Chem Chem Phys ; 13(43): 19561-72, 2011 Nov 21.
Article in English | MEDLINE | ID: mdl-21984202

ABSTRACT

The chemistry in low pressure (0.8-8 Pa) plasmas of H(2) + 10% N(2) mixtures has been experimentally investigated in a hollow cathode dc reactor using electrical probes for the estimation of electron temperatures and densities, and mass spectrometry to determine the concentration of ions and stable neutral species. The analysis of the measurements by means of a kinetic model has allowed the identification of the main physicochemical mechanisms responsible for the observed distributions of neutrals and ions and for their evolution with discharge pressure. The chemistry of neutral species is dominated by the formation of appreciable amounts of NH(3) at the metallic walls of the reactor through the successive hydrogenation of atomic nitrogen and nitrogen containing radicals. Both Eley-Rideal and Langmuir-Hinshelwood mechanisms are needed in the chain of hydrogenation steps in order to account satisfactorily for the observed ammonia concentrations, which, in the steady state, are found to reach values ~30-70% of those of N(2). The ionic composition of the plasma, which is entirely due to gas-phase processes, is the result of a competition between direct electron impact dissociation, more relevant for high electron temperatures (lower pressures), and ion-molecule chemistry that prevails for the lower electron temperatures (higher pressures). At the lowest pressure, products from the protonation of the precursor molecules (H(3)(+), N(2)H(+) and NH(4)(+)) and others from direct ionization (H(2)(+) and NH(3)(+)) are found in comparable amounts. At the higher pressures, the ionic distribution is largely dominated by ammonium. It is found that collisions of H(3)(+), NH(3)(+) and N(2)H(+) with the minor neutral component NH(3) are to a great extent responsible for the final prevalence of NH(4)(+).

15.
J Chem Phys ; 135(3): 034310, 2011 Jul 21.
Article in English | MEDLINE | ID: mdl-21787006

ABSTRACT

Rate coefficients for the mass extreme isotopologues of the H + H(2) reaction, namely, Mu + H(2), where Mu is muonium, and Heµ + H(2), where Heµ is a He atom in which one of the electrons has been replaced by a negative muon, have been calculated in the 200-1000 K temperature range by means of accurate quantum mechanical (QM) and quasiclassical trajectory (QCT) calculations and compared with the experimental and theoretical results recently reported by Fleming et al. [Science 331, 448 (2011)]. The QCT calculations can reproduce the experimental and QM rate coefficients and kinetic isotope effect (KIE), k(Mu)(T)/k(Heµ)(T), if the Gaussian binning procedure (QCT-GB)--weighting the trajectories according to their proximity to the right quantal vibrational action--is applied. The analysis of the results shows that the large zero point energy of the MuH product is the key factor for the large KIE observed.

16.
Phys Chem Chem Phys ; 13(20): 9655-66, 2011 May 28.
Article in English | MEDLINE | ID: mdl-21491042

ABSTRACT

Isotope exchange in low pressure cold plasmas of H(2)/D(2) mixtures has been investigated by means of mass spectrometric measurements of neutrals and ions, and kinetic model calculations. The measurements, which include also electron temperatures and densities, were performed in a stainless steel hollow cathode reactor for three discharge pressures: 1, 2 and 8 Pa, and for mixture compositions ranging from 100% H(2) to 100% D(2). The data are analyzed in the light of the model calculations, which are in good global agreement with the experiments. Isotope selective effects are found both in the surface recombination and in the gas-phase ionic chemistry. The dissociation of the fuel gas molecules is followed by wall recycling, which regenerates H(2) and D(2) and produces HD. Atomic recombination at the wall is found to proceed through an Eley-Rideal mechanism, with a preference for reaction of the adsorbed atoms with gas phase D atoms. The best fit probabilities for Eley-Rideal abstraction with H and D are: γ(ER H) = 1.5 × 10(-3), γ(ER D) = 2.0 × 10(-3). Concerning ions, at 1 Pa the diatomic species H(2)(+), D(2)(+) and HD(+), formed directly by electron impact, prevail in the distributions, and at 8 Pa, the triatomic ions H(3)(+), H(2)D(+), HD(2)(+) and D(3)(+), produced primarily in reactions of diatomic ions with molecules, dominate the plasma composition. In this higher pressure regime, the formation of the mixed ions H(2)D(+) and HD(2)(+) is favoured in comparison with that of H(3)(+) and D(3)(+), as expected on statistical grounds. The model results predict a very small preference, undetectable within the precision of the measurements, for the generation of triatomic ions with a higher degree of deuteration, which is probably a residual influence at room temperature of the marked zero point energy effects (ZPE), relevant for deuterium fractionation in interstellar space. In contrast, ZPE effects are found to be decisive for the observed distribution of monoatomic ions H(+) and D(+), even at room temperature. The final H(+)/D(+) ratio is determined to a great extent by proton (and deuteron) exchange, which favours the enhancement of H(+) and the concomitant decrease of D(+).

17.
Phys Chem Chem Phys ; 12(39): 12591-603, 2010 Oct 21.
Article in English | MEDLINE | ID: mdl-20725673

ABSTRACT

The dynamics of the deuteron-proton exchange D(+) + H(2) → HD + H(+) reaction on its ground 1(1)A' potential energy surface has been the subject of a theoretical study for collision energies below 1.5 eV. The results obtained with three theoretical approaches: quasi-classical trajectory (QCT), statistical quasi-classical trajectory (SQCT), and accurate time-independent quantum mechanical (QM) calculations are compared in the range of collision energies from 5 meV to 0.2 eV. The QM calculations included all total angular momentum quantum numbers, J, up to J(max) ≈ 40 and all the Coriolis couplings. For higher collision energies, the comparison was restricted to the QCT and SQCT results given the enormous computational cost implied in the QM calculations. Reaction cross sections as a function of collision energy (excitation functions) for various initial rovibrational states have been determined and compared with the corresponding results for the endothermic H(+) + D(2) → HD + D(+) isotopic variant. The excitation function for the title reaction decays monotonically with collision energy as expected for an exothermic reaction without a barrier, in contrast to the behaviour observed in the mentioned H(+) + D(2) (v = 0, j ≤ 3). Reaction probabilities as a function of J (opacity functions) at several collision energies calculated with the different approaches were also examined and important differences between them were found. The effect of using the gaussian binning procedure that preserves, to a large extent, the zero point energy, as compared to the standard histogram binning in the QCT calculations, is also examined. At low collision energy, the best agreement with the accurate QM results is given by the SQCT data, although they tend to overestimate the reactivity. The deviations from the statistical behaviour of the QCT data at higher energies are remarkable. Nevertheless, on the whole, the title reaction can be deemed more statistical than the H(+) + D(2) reaction.

18.
Phys Chem Chem Phys ; 12(16): 4239-45, 2010 Apr 28.
Article in English | MEDLINE | ID: mdl-20379518

ABSTRACT

An experimental diagnosis and kinetic modeling of the ionic chemistry in low pressure DC plasmas of H(2)/Ar has been carried out. The studies were performed at pressures of 2 Pa and 0.7 Pa, in a hollow-cathode discharge reactor, using as plasma precursor a H(2)/Ar mixture with 15% Ar content. Experimental measurements include distributions of ion fluxes to the cathode, as well as electronic temperatures and densities in the plasma glow. Besides the species resulting directly from electron impact ionization (H(+), H(2)(+), Ar(+) and Ar(2+)), the ions H(3)(+) and ArH(+) were found to be formed in large amounts through protonation reactions in the glow. In spite of the not too large variation in the pressure of the two plasmas, the differences in the ion distributions are worth mentioning. In the 2 Pa discharge (but not in the 0.7 Pa), H(3)(+) was the dominant ion and ArH(+) exceeded markedly the Ar(+) signal. On the other hand, the appearance of Ar(2+) in the two plasmas points at the relevance of high energy electrons. The experimental results can be accounted for by a simple kinetic model, after including corrections for the presence of a small fraction (<3%) of high energy (>50 eV) electrons and for the attenuation of the Ar(+) ions in the sheath through asymmetric charge exchange with H(2).

19.
Phys Chem Chem Phys ; 12(13): 3164-70, 2010 Apr 07.
Article in English | MEDLINE | ID: mdl-20237705

ABSTRACT

Ice mixtures of methane and water are investigated by means of IR spectroscopy in the 14-60 K range. The spectroscopic research is focused on the symmetry-forbidden nu(1) band of CH(4) and the dangling bond bands of water. The nu(1) band is visible in the spectra of the mixtures, revealing a distorted methane structure which co-exists with the normal crystalline methane. The water dangling bond bands are found to increase their intensity and appear at red-shifted frequency when distorted methane is present. Methane adsorbed on water micropores or trapped inside the amorphous solid water structure is assumed to be responsible for these effects. CH(4) mobility in water ice depends on the deposition method used to prepare the samples and on the temperature. After warming the samples to 60 K, above the methane sublimation point, a fraction of CH(4) is retained in the water ice. An adsorption isotherm analysis is performed yielding the estimation of the desorption energy of CH(4) on H(2)O amorphous surfaces.

20.
J Phys Chem A ; 113(14): 3321-9, 2009 Apr 09.
Article in English | MEDLINE | ID: mdl-19296629

ABSTRACT

The solid phases of methanol were investigated using IR spectroscopy and numerical calculations with the SIESTA method. Improved spectra are reported of amorphous methanol at 90 K, and in particular of the alpha and beta phases at 130 and 165 K, respectively, with assignments of bands not previously measured. The main features of the spectra of each phase are discussed and compared. A study of spectral changes with temperature leads to the conclusion that the metastable phase previously reported might be a mixture of the two known stable phases. Such a mixture could explain all spectral features observed in this investigation. The theoretical calculations provide reasonable agreement with the experimental data for most of the parameters, but predict H-bondings stronger than those observed. Differences between the spectra of the alpha and beta phases are predicted with similar characteristics to the experimental results.

SELECTION OF CITATIONS
SEARCH DETAIL
...