Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Hemasphere ; 8(7): e86, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38948924

ABSTRACT

Bridging therapy (BT) after leukapheresis is required in most relapsed/refractory (R/R) large B-cell lymphoma (LBCL) patients receiving chimeric antigen receptor (CAR) T cells. Bendamustine-containing regimens are a potential BT option. We aimed to assess if this agent had a negative impact on CAR-T outcomes when it was administered as BT. We included R/R LBCL patients from six centers who received systemic BT after leukapheresis from February 2019 to September 2022; patients who only received steroids or had pre-apheresis bendamustine exposure were excluded. Patients were divided into two BT groups, with and without bendamustine. Separate safety and efficacy analyses were carried out for axi-cel and tisa-cel. Of 243 patients who received BT, bendamustine (benda) was included in 62 (26%). There was a higher rate of BT progressors in the non-benda group (62% vs. 45%, p = 0.02). Concerning CAR-T efficacy, complete responses were comparable for benda versus non-benda BT cohorts with axi-cel (70% vs. 53%, p = 0.12) and tisa-cel (44% vs. 36%, p = 0.70). Also, 12-month progression-free and overall survival were not significantly different between BT groups with axi-cel (56% vs. 43% and 71% vs. 63%) and tisa-cel (25% vs. 26% and 52% vs. 48%); there were no differences when BT response was considered. CAR T-cell expansion for each construct was similar between BT groups. Regarding safety, CRS G ≥3 (6% vs. 6%, p = 0.79), ICANS G ≥3 (15% vs. 17%, p = 0.68), severe infections, and neutropenia post-infusion were comparable among BT regimens. BT with bendamustine-containing regimens is safe for patients requiring disease control during CAR T-cell manufacturing.

3.
J Immunother Cancer ; 9(6)2021 06.
Article in English | MEDLINE | ID: mdl-34135100

ABSTRACT

Chimeric antigen receptor T-cells (CAR T-cells) for the treatment of relapsing/refractory B-cell precursor acute lymphoblastic leukemia have led to exciting clinical results. However, CAR T-cell approaches revealed a potential risk of CD19-/CAR+ leukemic relapse due to inadvertent transduction of leukemia cells. BACKGROUND: METHODS: We evaluated the impact of a high percentage of leukemia blast contamination in patient-derived starting material (SM) on CAR T-cell drug product (DP) manufacturing. In vitro as well as in vivo models were employed to identify characteristics of the construct associated with better profile of safety in case of inadvertent B-cell leukemia transduction during CAR T-cell manufacturing. RESULTS: The presence of large amounts of CD19+ cells in SM did not affect the transduction level of DPs, as well as the CAR T-cell rate of expansion at the end of standard production of 14 days. DPs were deeply characterized by flow cytometry and molecular biology for Ig-rearrangements, showing that the level of B-cell contamination in DPs did not correlate with the percentage of CD19+ cells in SM, in the studied patient cohort. Moreover, we investigated whether CAR design may affect the control of CAR+ leukemia cells. We provided evidences that CAR.CD19 short linker (SL) prevents complete epitope masking in CD19+CAR+ leukemia cells and we demonstrated in vitro and in vivo that CD19 +CAR(SL)+leukemic cells are killed by CAR.CD19 T-cells. CONCLUSIONS: Taken together, these data suggest that a VL-VH SL may result in a safe CAR-T product, even when manufacturing starts from biological materials characterized by heavy contamination of leukemia blasts.


Subject(s)
Epitopes/immunology , Leukemia, B-Cell/immunology , Receptors, Chimeric Antigen/immunology , Animals , Cell Line, Tumor , Disease Models, Animal , Humans , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...