Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 16(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38927917

ABSTRACT

BACKGROUND: The prediction of the regrowth potential of pituitary adenomas after surgery is challenging. The genome-wide DNA methylation profiling of pituitary adenomas may separate adenomas into distinct methylation classes corresponding to histology-based subtypes. Specific genes and differentially methylated probes involving regrowth have been proposed, but no study has linked this epigenetic variance with regrowth potential and the clinical heterogeneity of nonfunctioning pituitary adenomas. This study aimed to investigate whether DNA methylation profiling can be useful as a clinical prognostic marker. METHODS: A DNA methylation analysis by Illumina's MethylationEPIC array was performed on 54 pituitary macroadenomas from patients who underwent transsphenoidal surgery during 2007-2017. Twelve patients were excluded due to an incomplete postoperative follow-up, degenerated biobank-stored tissue, or low DNA methylation quality. For the quantitative measurement of the tumor regrowth rate, we conducted a 3D volumetric analysis of tumor remnant volume via annual magnetic resonance imaging. A linear mixed effects model was used to examine whether different DNA methylation clusters had different regrowth patterns. RESULTS: The DNA methylation profiling of 42 tissue samples showed robust DNA methylation clusters, comparable with previous findings. The subgroup of 33 nonfunctioning pituitary adenomas of an SF1-lineage showed five subclusters with an approximately unbiased score of 86%. There were no overall statistically significant differences when comparing hazard ratios for regrowth of 100%, 50%, or 0%. Despite this, plots of correlated survival estimates suggested higher regrowth rates for some clusters. The mixed effects model of accumulated regrowth similarly showed tendencies toward an association between specific DNA methylation clusters and regrowth potential. CONCLUSION: The DNA methylation profiling of nonfunctioning pituitary adenomas may potentially identify adenomas with increased growth and recurrence potential. Larger validation studies are needed to confirm the findings from this explorative pilot study.

2.
Nat Commun ; 14(1): 5669, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37704607

ABSTRACT

Recurrence of meningiomas is unpredictable by current invasive methods based on surgically removed specimens. Identification of patients likely to recur using noninvasive approaches could inform treatment strategy, whether intervention or monitoring. In this study, we analyze the DNA methylation levels in blood (serum and plasma) and tissue samples from 155 meningioma patients, compared to other central nervous system tumor and non-tumor entities. We discover DNA methylation markers unique to meningiomas and use artificial intelligence to create accurate and universal models for identifying and predicting meningioma recurrence, using either blood or tissue samples. Here we show that liquid biopsy is a potential noninvasive and reliable tool for diagnosing and predicting outcomes in meningioma patients. This approach can improve personalized management strategies for these patients.


Subject(s)
Meningeal Neoplasms , Meningioma , Humans , Meningioma/diagnosis , Meningioma/genetics , Prognosis , Artificial Intelligence , DNA Methylation , Liquid Biopsy , Meningeal Neoplasms/diagnosis , Meningeal Neoplasms/genetics
3.
Neurooncol Adv ; 4(Suppl 2): ii22-ii32, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36380867

ABSTRACT

In this review, we summarize the current approaches used to detect glioma tissue-derived DNA methylation markers in liquid biopsy specimens with the aim to diagnose, prognosticate and potentially track treatment response and evolution of patients with gliomas.

4.
Neuro Oncol ; 24(7): 1126-1139, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35212383

ABSTRACT

BACKGROUND: DNA methylation abnormalities are pervasive in pituitary neuroendocrine tumors (PitNETs). The feasibility to detect methylome alterations in circulating cell-free DNA (cfDNA) has been reported for several central nervous system (CNS) tumors but not across PitNETs. The aim of the study was to use the liquid biopsy (LB) approach to detect PitNET-specific methylation signatures to differentiate these tumors from other sellar diseases. METHODS: We profiled the cfDNA methylome (EPIC array) of 59 serum and 41 plasma LB specimens from patients with PitNETs and other CNS diseases (sellar tumors and other pituitary non-neoplastic diseases, lower-grade gliomas, and skull-base meningiomas) or nontumor conditions, grouped as non-PitNET. RESULTS: Our results indicated that despite quantitative and qualitative differences between serum and plasma cfDNA composition, both sources of LB showed that patients with PitNETs presented a distinct methylome landscape compared to non-PitNETs. In addition, LB methylomes captured epigenetic features reported in PitNET tissue and provided information about cell-type composition. Using LB-derived PitNETs-specific signatures as input to develop machine-learning predictive models, we generated scores that distinguished PitNETs from non-PitNETs conditions, including sellar tumor and non-neoplastic pituitary diseases, with accuracies above ~93% in independent cohort sets. CONCLUSIONS: Our results underpin the potential application of methylation-based LB profiling as a noninvasive approach to identify clinically relevant epigenetic markers to diagnose and potentially impact the prognostication and management of patients with PitNETs.


Subject(s)
Cell-Free Nucleic Acids , Neuroendocrine Tumors , Pituitary Neoplasms , Biomarkers, Tumor/genetics , DNA Methylation , Humans , Neuroendocrine Tumors/diagnosis , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/pathology , Pituitary Neoplasms/diagnosis , Pituitary Neoplasms/genetics , Pituitary Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...