Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Front Cell Neurosci ; 17: 895017, 2023.
Article in English | MEDLINE | ID: mdl-37006470

ABSTRACT

Introduction: Increasing evidence indicates that neurodegenerative diseases, including Alzheimer's disease (AD), are a product of gene-by-environment interplay. The immune system is a major contributor mediating these interactions. Signaling between peripheral immune cells and those within the microvasculature and meninges of the central nervous system (CNS), at the blood-brain barrier, and in the gut likely plays an important role in AD. The cytokine tumor necrosis factor (TNF) is elevated in AD patients, regulates brain and gut barrier permeability, and is produced by central and peripheral immune cells. Our group previously reported that soluble TNF (sTNF) modulates cytokine and chemokine cascades that regulate peripheral immune cell traffic to the brain in young 5xFAD female mice, and in separate studies that a diet high in fat and sugar (HFHS) dysregulates signaling pathways that trigger sTNF-dependent immune and metabolic responses that can result in metabolic syndrome, which is a risk factor for AD. We hypothesized that sTNF is a key mediator of peripheral immune cell contributions to gene-by-environment interactions to AD-like pathology, metabolic dysfunction, and diet-induced gut dysbiosis. Methods: Female 5xFAD mice were subjected to HFHS diet for 2 months and then given XPro1595 to inhibit sTNF for the last month or saline vehicle. We quantified immune cell profiles by multi-color flow cytometry on cells isolated from brain and blood; metabolic, immune, and inflammatory mRNA and protein marker biochemical and immunhistological analyses, gut microbiome, and electrophysiology in brain slices were also performed. Results: Here, we show that selective inhibition of sTNF signaling via the biologic XPro1595 modulates the effects of an HFHS diet in 5xFAD mice on peripheral and central immune profiles including CNS-associated CD8+ T cells, the composition of gut microbiota, and long-term potentiation deficits. Discussion: Obesogenic diet induces immune and neuronal dysfunction in 5xFAD mice and sTNF inhibition mitigates its effects. A clinical trial in subjects at risk for AD due to genetic predisposition and underlying inflammation associated with peripheral inflammatory co-morbidities will be needed to investigate the extent to which these findings translate to the clinic.

2.
Nat Rev Immunol ; 22(11): 657-673, 2022 11.
Article in English | MEDLINE | ID: mdl-35246670

ABSTRACT

Parkinson disease (PD) is a progressive neurodegenerative disease that affects peripheral organs as well as the central nervous system and involves a fundamental role of neuroinflammation in its pathophysiology. Neurohistological and neuroimaging studies support the presence of ongoing and end-stage neuroinflammatory processes in PD. Moreover, numerous studies of peripheral blood and cerebrospinal fluid from patients with PD suggest alterations in markers of inflammation and immune cell populations that could initiate or exacerbate neuroinflammation and perpetuate the neurodegenerative process. A number of disease genes and risk factors have been identified as modulators of immune function in PD and evidence is mounting for a role of viral or bacterial exposure, pesticides and alterations in gut microbiota in disease pathogenesis. This has led to the hypothesis that complex gene-by-environment interactions combine with an ageing immune system to create the 'perfect storm' that enables the development and progression of PD. We discuss the evidence for this hypothesis and opportunities to harness the emerging immunological knowledge from patients with PD to create better preclinical models with the long-term goal of enabling earlier identification of at-risk individuals to prevent, delay and more effectively treat the disease.


Subject(s)
Gastrointestinal Microbiome , Immune System Diseases , Neurodegenerative Diseases , Parkinson Disease , Humans , Parkinson Disease/pathology , Parkinson Disease/therapy , Inflammation
3.
Front Immunol ; 13: 1056417, 2022.
Article in English | MEDLINE | ID: mdl-36618392

ABSTRACT

Introduction: Progranulin (PGRN) is a secreted glycoprotein, the expression of which is linked to several neurodegenerative diseases. Although its specific function is still unclear, several studies have linked it with lysosomal functions and immune system regulation. Here, we have explored the role of PGRN in peripheral and central immune system homeostasis by investigating the consequences of PGRN deficiency on adaptive and innate immune cell populations. Methods: First, we used gene co-expression network analysis of published data to test the hypothesis that Grn has a critical role in regulating the activation status of immune cell populations in both central and peripheral compartments. To investigate the extent to which PGRN-deficiency resulted in immune dysregulation, we performed deep immunophenotyping by flow cytometry of 19-24-month old male and female Grn-deficient mice (PGRN KO) and littermate Grn-sufficient controls (WT). Results: Male PGRN KO mice exhibited a lower abundance of microglial cells with higher MHC-II expression, increased CD44 expression on monocytes in the brain, and more CNS-associated CD8+ T cells compared to WT mice. Furthermore, we observed an increase in CD44 on CD8+ T cells in the peripheral blood. Female PGRN KO mice also had fewer microglia compared to WT mice, and we also observed reduced expression of MHC-II on brain monocytes. Additionally, we found an increase in Ly-6Chigh monocyte frequency and decreased CD44 expression on CD8+ and CD4+ T cells in PGRN KO female blood. Given that Gpnmb, which encodes for the lysosomal protein Glycoprotein non-metastatic melanoma protein B, has been reported to be upregulated in PGRN KO mice, we investigated changes in GPNMB protein expression associated with PGRN deficits and found that GPNMB is modulated in myeloid cells in a sex-specific manner. Discussion: Our data suggest that PGRN and GPNMB jointly regulate the peripheral and the central immune system in a sex-specific manner; thus, understanding their associated mechanisms could pave the way for developing new neuroprotective strategies to modulate central and peripheral inflammation to lower risk for neurodegenerative diseases and possibly delay or halt progression.


Subject(s)
CD8-Positive T-Lymphocytes , Intercellular Signaling Peptides and Proteins , Male , Female , Animals , Mice , Progranulins/genetics , Intercellular Signaling Peptides and Proteins/genetics , Granulins , Mice, Knockout , Immune System
4.
NPJ Parkinsons Dis ; 7(1): 26, 2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33750819

ABSTRACT

Links that implicate the gastrointestinal system in Parkinson's disease (PD) pathogenesis and progression have become increasingly common. PD shares several similarities with Crohn's disease (CD). Intestinal inflammation is common in both PD and CD and is hypothesized to contribute to PD neuropathology. Mutations in leucine-rich repeat kinase 2 (LRRK2) are one of the greatest genetic contributors to PD. Variants in LRRK2 have also been associated with increased incidence of CD. Since its discovery, LRRK2 has been studied intensely in neurons, despite multiple lines of evidence showing that LRRK2 is highly expressed in immune cells. Based on the fact that higher levels of LRRK2 are detectable in inflamed colonic tissue from CD patients and in peripheral immune cells from sporadic PD patients relative to matched controls, we posit that LRRK2 regulates inflammatory processes. Therefore, LRRK2 may sit at a crossroads whereby gut inflammation and higher LRRK2 levels in CD may be a biomarker of increased risk for sporadic PD and/or may represent a tractable therapeutic target in inflammatory diseases that increase risk for PD. Here we will focus on reviewing how PD and CD share overlapping phenotypes, particularly in terms of LRRK2 in the context of the immune system, that could be targeted in future therapies.

5.
Mov Disord ; 36(1): 25-36, 2021 01.
Article in English | MEDLINE | ID: mdl-33314312

ABSTRACT

Idiopathic Parkinson's disease (iPD) is a movement disorder characterized by the degeneration of dopaminergic neurons and aggregation of the protein α-synuclein. Patients with iPD vary in age of symptom onset, rate of progression, severity of motor and non-motor symptoms, and extent of central and peripheral inflammation. Genetic and environmental factors are believed to act synergistically in iPD pathogenesis. We propose that environmental factors (pesticides and infections) increase the risk for iPD via the immune system and that the role of PD risk genes in immune cells is worthy of investigation. This review highlights the major PD-relevant genes expressed in immune cells and key environmental factors that activate immune cells and, alone or in combination with other factors, may contribute to iPD pathogenesis. By reviewing these interactions, we seek to enable the future development of immunomodulatory approaches to prevent or delay onset of iPD. © 2020 International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Dopaminergic Neurons , Humans , Immunity , Inflammation/genetics , Parkinson Disease/genetics , alpha-Synuclein/genetics
6.
Front Neurosci ; 14: 443, 2020.
Article in English | MEDLINE | ID: mdl-32508566

ABSTRACT

It is becoming increasingly accepted that there is an interplay between the peripheral immune response and neuroinflammation in the pathophysiology of Parkinson's disease (PD). Mutations in the leucine-rich-repeat kinase 2 (LRRK2) gene are associated with familial and sporadic cases of PD but are also found in immune-related disorders, such as inflammatory bowel disease (IBD) and leprosy. Furthermore, LRRK2 has been associated with bacterial infections such as Mycobacterium tuberculosis and Salmonella typhimurium. Recent evidence suggests a role of LRRK2 in the regulation of the immune system and modulation of inflammatory responses, at a systemic level, with LRRK2 functionally implicated in both the immune system of the central nervous system (CNS) and the periphery. It has therefore been suggested that peripheral immune signaling may play an important role in the regulation of neurodegeneration in LRRK2 as well as non-LRRK2-associated PD. This review will discuss the current evidence for this hypothesis and will provide compelling rationale for placing LRRK2 at the interface between peripheral immune responses and neuroinflammation.

7.
Elife ; 92020 04 15.
Article in English | MEDLINE | ID: mdl-32293561

ABSTRACT

A gene associated with Parkinson's disease regulates mitochondrial homeostasis, thus affecting innate immunity.


Subject(s)
Mycobacterium tuberculosis , Parkinson Disease , Homeostasis , Humans , Immunity, Innate , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Mitochondria/genetics
9.
Mol Med ; 24(1): 56, 2018 10 24.
Article in English | MEDLINE | ID: mdl-30355312

ABSTRACT

BACKGROUND: Exposure of rodents to chronic high-fat diet (HFD) results in upregulation of inflammatory markers and proliferation of microglia within the mediobasal hypothalamus. Such hypothalamic inflammation is associated with metabolic dysfunction, central leptin resistance, and maintenance of obesity. Bariatric surgeries result in long-term stable weight loss and improved metabolic function. However, the effects of such surgical procedures on HFD-induced hypothalamic inflammation are unknown. We sought to characterize the effects of two bariatric surgical procedures, Roux-en-Y gastric bypass (RYGB) and biliary diversion (BD-IL), in female mice with particular emphasis on HFD-induced hypothalamic inflammation and microgliosis. METHODS: RYGB and BD-IL were performed on diet-induced obese (DIO) mice. Quantitative RT-PCR and fluorescent microscopy were used to evaluate hypothalamic inflammatory gene expression and microgliosis. Results were compared to lean (CD), DIO sham-surgerized mice (DIO-SHAM), and dietary weight loss (DIO-Rev) controls. RESULTS: In female mice, RYGB and BD-IL result in normalization of hypothalamic inflammatory gene expression and microgliosis within 8 weeks of surgery, despite ongoing exposure to HFD. Paralleling these results, the hypothalamic expression levels of the orexigenic neuropeptide Agrp and the anorexic response of surgical mice to exogenous leptin were comparable to lean controls (CD). In contrast, results from DIO-Rev mice were comparable to DIO-SHAM mice, despite transition back to standard rodent show and normalization of weight. CONCLUSION: Bariatric surgery attenuates HFD-induced hypothalamic inflammation and microgliosis and restores leptin sensitivity, despite ongoing exposure to HFD.


Subject(s)
Bariatric Surgery , Hypothalamus/pathology , Obesity/surgery , Animals , Diet, High-Fat , Female , Inflammation/pathology , Inflammation/surgery , Mice, Inbred C57BL
10.
Lab Invest ; 94(7): 726-39, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24840332

ABSTRACT

The forkhead box (Fox) superfamily of transcription factors has essential roles in organogenesis and tissue differentiation. Foxa1 and Foxa2 are expressed during prostate budding and ductal morphogenesis, whereas Foxa1 expression is retained in adult prostate epithelium. Previous characterization of prostatic tissue rescued from embryonic Foxa1 knockout mice revealed Foxa1 to be essential for ductal morphogenesis and epithelial maturation. However, it is unknown whether Foxa1 is required to maintain the differentiated status in adult prostate epithelium. Here, we employed the PBCre4 transgenic system and determined the impact of prostate-specific Foxa1 deletion in adult murine epithelium. PBCre4/Foxa1(loxp/loxp) mouse prostates showed progressive florid hyperplasia with extensive cribriform patterning, with the anterior prostate being most affected. Immunohistochemistry studies show mosaic Foxa1 KO consistent with PBCre4 activity, with Foxa1 KO epithelial cells specifically exhibiting altered cell morphology, increased proliferation, and elevated expression of basal cell markers. Castration studies showed that, while PBCre4/Foxa1(loxp/loxp) prostates did not exhibit altered sensitivity in response to hormone ablation compared with control prostates, the number of Foxa1-positive cells in mosaic Foxa1 KO prostates was significantly reduced compared with Foxa1-negative cells following castration. Unexpectedly, gene expression profile analyses revealed that Foxa1 deletion caused abnormal expression of seminal vesicle-associated genes in KO prostates. In summary, these results indicate Foxa1 expression is required for the maintenance of prostatic cellular differentiation.


Subject(s)
Cell Differentiation/genetics , Epithelium/metabolism , Hepatocyte Nuclear Factor 3-alpha/genetics , Prostatic Hyperplasia/genetics , Animals , Epithelium/pathology , Hepatocyte Nuclear Factor 3-alpha/deficiency , Hepatocyte Nuclear Factor 3-alpha/metabolism , Immunohistochemistry , Integrases/genetics , Integrases/metabolism , Male , Mice , Mice, Knockout , Mice, Transgenic , Microscopy, Fluorescence , Oligonucleotide Array Sequence Analysis , Prostate/metabolism , Prostate/pathology , Prostatic Hyperplasia/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Seminal Vesicles/metabolism , Transcriptome/genetics
11.
PLoS One ; 7(5): e36669, 2012.
Article in English | MEDLINE | ID: mdl-22590586

ABSTRACT

Approximately 50% of patients with muscle-invasive bladder cancer (MIBC) develop metastatic disease, which is almost invariably lethal. However, our understanding of pathways that drive aggressive behavior of MIBC is incomplete. Members of the FOXA subfamily of transcription factors are implicated in normal urogenital development and urologic malignancies. FOXA proteins are implicated in normal urothelial differentiation, but their role in bladder cancer is unknown. We examined FOXA expression in commonly used in vitro models of bladder cancer and in human bladder cancer specimens, and used a novel in vivo tissue recombination system to determine the functional significance of FOXA1 expression in bladder cancer. Logistic regression analysis showed decreased FOXA1 expression is associated with increasing tumor stage (p<0.001), and loss of FOXA1 is associated with high histologic grade (p<0.001). Also, we found that bladder urothelium that has undergone keratinizing squamous metaplasia, a precursor to the development of squamous cell carcinoma (SCC) exhibited loss of FOXA1 expression. Furthermore, 81% of cases of SCC of the bladder were negative for FOXA1 staining compared to only 40% of urothelial cell carcinomas. In addition, we showed that a subpopulation of FOXA1 negative urothelial tumor cells are highly proliferative. Knockdown of FOXA1 in RT4 bladder cancer cells resulted in increased expression of UPK1B, UPK2, UPK3A, and UPK3B, decreased E-cadherin expression and significantly increased cell proliferation, while overexpression of FOXA1 in T24 cells increased E-cadherin expression and significantly decreased cell growth and invasion. In vivo recombination of bladder cancer cells engineered to exhibit reduced FOXA1 expression with embryonic rat bladder mesenchyme and subsequent renal capsule engraftment resulted in enhanced tumor proliferation. These findings provide the first evidence linking loss of FOXA1 expression with histological subtypes of MIBC and urothelial cell proliferation, and suggest an important role for FOXA1 in the malignant phenotype of MIBC.


Subject(s)
Antigens, Differentiation/biosynthesis , Biomarkers, Tumor/biosynthesis , Carcinoma, Squamous Cell/metabolism , Cell Proliferation , Gene Expression Regulation, Neoplastic , Hepatocyte Nuclear Factor 3-alpha/biosynthesis , Urinary Bladder Neoplasms/metabolism , Urothelium/metabolism , Animals , Cadherins/biosynthesis , Carcinoma, Squamous Cell/pathology , Female , Humans , Male , Mice , Mice, SCID , Middle Aged , Neoplasm Grading , Neoplasm Invasiveness , Neoplasm Staging , Neoplasm Transplantation , Rats , Urinary Bladder Neoplasms/pathology , Urothelium/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...