Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Affect Disord ; 342: 85-90, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37714385

ABSTRACT

BACKGROUND: Transcutaneous cervical vagus nerve stimulation (tcVNS) has emerged as a potential treatment strategy for patients with stress-related psychiatric disorders. Ghrelin is a hormone that has been postulated to be a biomarker of stress. While the mechanisms of action of tcVNS are unclear, we hypothesized that tcVNS reduces the levels of ghrelin in response to stress. METHODS: Using a randomized double-blind approach, we studied the effects of tcVNS on ghrelin levels in individuals with a history of exposure to traumatic stress. Participants received either sham (n = 29) or active tcVNS (n = 26) after exposure to acute personalized traumatic script stress and mental stress challenges (public speech, mental arithmetic) over a three day period. RESULTS: There were no significant differences in the levels of ghrelin between the tcVNS and sham stimulation groups at either baseline or in the absence of trauma scripts. However, tcVNS in conjunction with personalized traumatic scripts resulted in lower ghrelin levels compared to the sham stimulation group (265.2 ± 143.6 pg/ml vs 478.7 ± 349.2 pg/ml, P = 0.01). Additionally, after completing the public speaking and mental arithmetic tests, ghrelin levels were found to be lower in the group receiving tcVNS compared to the sham group (293.3 ± 102.4 pg/ml vs 540.3 ± 203.9 pg/ml, P = 0.009). LIMITATIONS: Timing of ghrelin measurements, and stimulation of only left vagus nerve. CONCLUSION: tcVNS decreases ghrelin levels in response to various stressful stimuli. These findings are consistent with a growing literature that tcVNS modulates hormonal and autonomic responses to stress.


Subject(s)
Transcutaneous Electric Nerve Stimulation , Vagus Nerve Stimulation , Humans , Ghrelin , Vagus Nerve Stimulation/methods , Vagus Nerve/physiology , Autonomic Nervous System , Transcutaneous Electric Nerve Stimulation/methods , Psychophysiologic Disorders
2.
Article in English | MEDLINE | ID: mdl-34778863

ABSTRACT

BACKGROUND: Posttraumatic stress disorder (PTSD) is a highly disabling condition associated with alterations in multiple neurobiological systems, including increases in inflammatory and sympathetic function, responsible for maintenance of symptoms. Treatment options including medications and psychotherapies have limitations. We previously showed that transcutaneous Vagus Nerve Stimulation (tcVNS) blocks inflammatory (interleukin (IL)-6) responses to stress in PTSD. The purpose of this study was to assess the effects of tcVNS on PTSD symptoms and inflammatory responses to stress. METHODS: Twenty patients with PTSD were randomized to double blind active tcVNS (N=9) or sham (N=11) stimulation in conjunction with exposure to personalized traumatic scripts immediately followed by active or sham tcVNS and measurement of IL-6 and other biomarkers of inflammation. Patients then self administered active or sham tcVNS twice daily for three months. PTSD symptoms were measured with the PTSD Checklist (PCL) and the Clinician Administered PTSD Scale (CAPS), clinical improvement with the Clinical Global Index (CGI) and anxiety with the Hamilton Anxiety Scale (Ham-A) at baseline and one-month intervals followed by a repeat of measurement of biomarkers with traumatic scripts. After three months patients self treated with twice daily open label active tcVNS for another three months followed by assessment with the CGI. RESULTS: Traumatic scripts increased IL-6 in PTSD patients, an effect that was blocked by tcVNS (p<.05). Active tcVNS treatment for three months resulted in a 31% greater reduction in PTSD symptoms compared to sham treatment as measured by the PCL (p=0.013) as well as hyperarousal symptoms and somatic anxiety measured with the Ham-A p<0.05). IL-6 increased from baseline in sham but not tcVNS. Open label tcVNS resulted in improvements measured with the CGI compared to the sham treatment period p<0.05). CONCLUSIONS: These preliminary results suggest that tcVNS reduces inflammatory responses to stress, which may in part underlie beneficial effects on PTSD symptoms.

3.
Brain Behav Immun ; 90: 294-302, 2020 11.
Article in English | MEDLINE | ID: mdl-32916271

ABSTRACT

Stress may contribute to progression of coronary heart disease (CHD) through inflammation, especially among women. Thus, we sought to examine whether increased inflammatory response to stress among patients with CHD is associated with a greater risk of cardiovascular events and whether this risk is higher in women. We examined inflammatory biomarkers known to increase with mental stress (speech task), including interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and matrix metallopeptidase-9 (MMP-9) among 562 patients with stable CHD. Inflammatory response, the difference between post-stress and resting values, was examined as a predictor of major adverse cardiovascular events (MACE) using subdistribution hazards models for competing risks adjusting for demographics, cardiovascular risk factors, and medications. MACE was defined as a composite endpoint of cardiovascular death, myocardial infarction, unstable angina with revascularization, and heart failure. All biomarkers were standardized. The mean age was 63 years (range 34-79) and 24% were women. During a median follow-up of 3 years, 71 patients experienced MACE. Overall, there was no significant association between inflammatory response to stress and risk of MACE, but there were sex-based interactions for IL-6 (p = 0.001) and MCP-1 (p = 0.01). The risk of MACE increased 56% (HR: 1.56; 95% CI: 1.21, 2.01; p = 0.001) and 30% (HR: 1.30; 95% 1.09, 1.55; p = 0.004) for each standard deviation increase in IL-6 and MCP-1 response to mental stress for women, respectively, while there was no association among men. Increased inflammation in response to stress is associated with future adverse cardiovascular outcomes among women with CHD.


Subject(s)
Cardiovascular System , Coronary Artery Disease , Heart Failure , Myocardial Infarction , Adult , Aged , Female , Humans , Male , Middle Aged , Risk Factors , Sex Characteristics
4.
Brain Behav Immun Health ; 9: 100138, 2020 Dec.
Article in English | MEDLINE | ID: mdl-34589887

ABSTRACT

Posttraumatic stress disorder (PTSD) is a highly disabling condition associated with alterations in multiple neurobiological systems, including increases in inflammatory function. Vagus nerve stimulation (VNS) decreases inflammation, however few studies have examined the effects of non-invasive VNS on physiology in human subjects, and no studies in patients with PTSD. The purpose of this study was to assess the effects of transcutaneous cervical VNS (tcVNS) on inflammatory responses to stress. Thirty subjects with a history of exposure to traumatic stress with (N â€‹= â€‹10) and without (N â€‹= â€‹20) PTSD underwent exposure to stressful tasks immediately followed by active or sham tcVNS and measurement of multiple biomarkers of inflammation (interleukin-(IL)-6, IL-2, IL-1ß, Tumor Necrosis Factor alpha (TNFα) and Interferon gamma (IFNγ) over multiple time points. Stressful tasks included exposure to personalized scripts of traumatic events on day 1, and public speech and mental arithmetic (Mental Stress) tasks on days 2 and 3. Traumatic scripts were associated with a pattern of subjective anger measured with Visual Analogue Scales and increased IL-6 and IFNγ in PTSD patients that was blocked by tcVNS (p â€‹< â€‹.05). Traumatic stress had minimal effects on these biomarkers in non-PTSD subjects and there was no difference between tcVNS or sham. No significant differences were seen between groups in IL-2, IL-1ß, or TNFα. These results demonstrate that tcVNS blocks behavioral and inflammatory responses to stress reminders in PTSD.

SELECTION OF CITATIONS
SEARCH DETAIL
...