Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Immun Ageing ; 21(1): 34, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840213

ABSTRACT

BACKGROUND: Streptococcus pneumoniae (pneumococcus) is a leading cause of pneumonia in older adults. Successful control of pneumococci requires robust pulmonary neutrophil influx early in infection. However, aging is associated with aberrant neutrophil recruitment and the mechanisms behind that are not understood. Here we explored how neutrophil recruitment following pneumococcal infection changes with age and the host pathways regulating this. RESULTS: Following pneumococcal infection there was a significant delay in early neutrophil recruitment to the lungs of aged mice. Neutrophils from aged mice showed defects in trans-endothelial migration in vitro compared to young controls. To understand the pathways involved, we examined immune modulatory extracellular adenosine (EAD) signaling, that is activated upon cellular damage. Signaling through the lower affinity A2A and A2B adenosine receptors had no effect on neutrophil recruitment to infected lungs. In contrast, inhibition of the high affinity A1 receptor in young mice blunted neutrophil recruitment to the lungs following infection. A1 receptor inhibition decreased expression of CXCR2 on circulating neutrophils, which is required for trans-endothelial migration. Indeed, A1 receptor signaling on neutrophils was required for their ability to migrate across endothelial cells in response to infection. Aging was not associated with defects in EAD production or receptor expression on neutrophils. However, agonism of A1 receptor in aged mice rescued the early defect in neutrophil migration to the lungs and improved control of bacterial burden. CONCLUSIONS: This study suggests age-driven defects in EAD damage signaling can be targeted to rescue the delay in pulmonary neutrophil migration in response to bacterial pneumonia.

2.
Infect Immun ; 92(5): e0052223, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38629842

ABSTRACT

Streptococcus pneumoniae (pneumococcus) remains a serious cause of pulmonary and systemic infections globally, and host-directed therapies are lacking. The aim of this study was to test the therapeutic efficacy of asapiprant, an inhibitor of prostaglandin D2 signaling, against pneumococcal infection. Treatment of young mice with asapiprant after pulmonary infection with invasive pneumococci significantly reduced systemic spread, disease severity, and host death. Protection was specific against bacterial dissemination from the lung to the blood but had no effect on pulmonary bacterial burden. Asapiprant-treated mice had enhanced antimicrobial activity in circulating neutrophils, elevated levels of reactive oxygen species (ROS) in lung macrophages/monocytes, and improved pulmonary barrier integrity indicated by significantly reduced diffusion of fluorescein isothiocyanate (FITC)-dextran from lungs into the circulation. These findings suggest that asapiprant protects the host against pneumococcal dissemination by enhancing the antimicrobial activity of immune cells and maintaining epithelial/endothelial barrier integrity in the lungs.


Subject(s)
Pneumococcal Infections , Animals , Female , Mice , Disease Models, Animal , Lung/microbiology , Lung/pathology , Mice, Inbred C57BL , Neutrophils/immunology , Neutrophils/drug effects , Pneumococcal Infections/drug therapy , Pneumococcal Infections/microbiology , Reactive Oxygen Species/metabolism , Streptococcus pneumoniae/drug effects
3.
bioRxiv ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38260350

ABSTRACT

Background: Streptococcus pneumoniae (pneumococcus) is a leading cause of pneumonia in older adults. Successful control of pneumococci requires robust pulmonary neutrophil influx early in infection. However, aging is associated with aberrant neutrophil recruitment and the mechanisms behind that are not understood. Here we explored how neutrophil recruitment following pneumococcal infection changes with age and the host pathways regulating this. Results: Following pneumococcal infection there was a significant delay in early neutrophil recruitment to the lungs of aged mice. Neutrophils from aged mice showed defects in trans-endothelial migration in vitro compared to young controls. To understand the pathways involved, we examined immune modulatory extracellular adenosine (EAD) signaling, that is activated upon cellular damage. Signaling through the lower affinity A2A and A2B adenosine receptors had no effect on neutrophil recruitment to infected lungs. In contrast, inhibition of the high affinity A1 receptor in young mice blunted neutrophil recruitment to the lungs following infection. A1 receptor inhibition decreased expression of CXCR2 on circulating neutrophils, which is required for transendothelial migration. Indeed, A1 receptor signaling on neutrophils was required for their ability to migrate across endothelial cells in response to infection. Aging was not associated with defects in EAD production or receptor expression on neutrophils. However, agonism of A1 receptor in aged mice rescued the early defect in neutrophil migration to the lungs and improved control of bacterial burden. Conclusions: This study suggests age-driven defects in EAD damage signaling can be targeted to rescue the delay in pulmonary neutrophil migration in response to bacterial pneumonia.

4.
PLoS Pathog ; 18(11): e1010700, 2022 11.
Article in English | MEDLINE | ID: mdl-36374941

ABSTRACT

Polymorphonuclear cells (PMNs) control Streptococcus pneumoniae (pneumococcus) infection through various antimicrobial activities. We previously found that reactive oxygen species (ROS) were required for optimal antibacterial function, however, the NADPH oxidase is known to be dispensable for the ability of PMNs to kill pneumococci. In this study, we explored the role of ROS produced by the mitochondria in PMN antimicrobial defense against pneumococci. We found that the mitochondria are an important source of overall intracellular ROS produced by murine PMNs in response to infection. We investigated the host and bacterial factors involved and found that mitochondrial ROS (MitROS) are produced independent of bacterial capsule or pneumolysin but presence of live bacteria that are in direct contact with PMNs enhanced the response. We further found that MyD88-/- PMNs produced less MitROS in response to pneumococcal infection suggesting that released bacterial products acting as TLR ligands are sufficient for inducing MitROS production in PMNs. To test the role of MitROS in PMN function, we used an opsonophagocytic killing assay and found that MitROS were required for the ability of PMNs to kill pneumococci. We then investigated the role of MitROS in host resistance and found that MitROS are produced by PMNs in response to pneumococcal infection. Importantly, treatment of mice with a MitROS scavenger prior to systemic challenge resulted in reduced survival of infected hosts. In exploring host pathways that control MitROS, we focused on extracellular adenosine, which is known to control PMN anti-pneumococcal activity, and found that signaling through the A2B adenosine receptor inhibits MitROS production by PMNs. A2BR-/- mice produced more MitROS and were significantly more resistant to infection. Finally, we verified the clinical relevance of our findings using human PMNs. In summary, we identified a novel pathway that controls MitROS production by PMNs, shaping host resistance against S. pneumoniae.


Subject(s)
Anti-Infective Agents , Pneumococcal Infections , Humans , Mice , Animals , Streptococcus pneumoniae/metabolism , Neutrophils/microbiology , Reactive Oxygen Species/metabolism , Pneumococcal Infections/metabolism , Anti-Infective Agents/metabolism , Receptors, Purinergic P1/metabolism , Mitochondria/metabolism , Anti-Bacterial Agents/metabolism
5.
Infect Immun ; 89(4)2021 03 17.
Article in English | MEDLINE | ID: mdl-33495271

ABSTRACT

Elderly individuals are at increased risk of life-threatening pulmonary infections. Neutrophils are a key determinant of the disease course of pathogen-induced pneumonia. Optimal host defense balances initial robust pulmonary neutrophil responses to control pathogen numbers, ultimately followed by the resolution of inflammation to prevent pulmonary damage. Recent evidence suggests that phenotypic and functional heterogeneity in neutrophils impacts host resistance to pulmonary pathogens. Apart from their apparent role in innate immunity, neutrophils also orchestrate subsequent adaptive immune responses during infection. Thus, the outcome of pulmonary infections can be shaped by neutrophils. This review summarizes the age-driven impairment of neutrophil responses and the contribution of these cells to the susceptibility of the elderly to pneumonia. We describe how aging is accompanied by changes in neutrophil recruitment, resolution, and function. We discuss how systemic and local changes alter the neutrophil phenotype in aged hosts. We highlight the gap in knowledge of whether these changes in neutrophils also contribute to the decline in adaptive immunity seen with age. We further detail the factors that drive dysregulated neutrophil responses in the elderly and the pathways that may be targeted to rebalance neutrophil activity and boost host resistance to pulmonary infections.


Subject(s)
Aging/immunology , Disease Susceptibility , Host-Pathogen Interactions , Neutrophils/immunology , Neutrophils/metabolism , Pneumonia/etiology , Adaptive Immunity , Age Factors , Aging/metabolism , Animals , Cell Communication/immunology , Cell Plasticity/immunology , Cytokines/metabolism , Disease Management , Disease Resistance/immunology , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate , Neutrophil Activation/genetics , Neutrophil Activation/immunology , Phagocytosis/genetics , Phagocytosis/immunology , Pneumonia/metabolism , Pneumonia/prevention & control , Pneumonia/therapy
6.
Aging Cell ; 19(10): e13218, 2020 10.
Article in English | MEDLINE | ID: mdl-32790148

ABSTRACT

The elderly are susceptible to serious infections by Streptococcus pneumoniae (pneumococcus), which calls for a better understanding of the pathways driving the decline in host defense in aging. We previously found that extracellular adenosine (EAD) shaped polymorphonuclear cell (PMN) responses, which are crucial for controlling infection. EAD is produced by CD39 and CD73, and signals via A1, A2A, A2B, and A3 receptors. The objective of this study was to explore the age-driven changes in the EAD pathway and its impact on PMN function. We found in comparison to young mice, PMNs from old mice expressed significantly less CD73, but similar levels of CD39 and adenosine receptors. PMNs from old mice failed to efficiently kill pneumococci ex vivo; however, supplementation with adenosine rescued this defect. Importantly, transfer of PMNs expressing CD73 from young mice reversed the susceptibility of old mice to pneumococcal infection. To identify which adenosine receptor(s) is involved, we used specific agonists and inhibitors. We found that A1 receptor signaling was crucial for PMN function as inhibition or genetic ablation of A1 impaired the ability of PMNs from young mice to kill pneumococci. Importantly, activation of A1 receptors rescued the age-associated defect in PMN function. In exploring mechanisms, we found that PMNs from old mice failed to efficiently kill engulfed pneumococci and that A1 receptor controlled intracellular killing. In summary, targeting the EAD pathway reverses the age-driven decline in PMN antimicrobial function, which has serious implications in combating infections.


Subject(s)
Adenosine/metabolism , Neutrophils/metabolism , Streptococcus pneumoniae/cytology , 5'-Nucleotidase/biosynthesis , 5'-Nucleotidase/immunology , Adenosine/immunology , Animals , Cellular Senescence/immunology , Male , Mice , Mice, Inbred C57BL , Neutrophils/enzymology , Neutrophils/immunology , Neutrophils/transplantation , Pneumococcal Infections/immunology , Pneumococcal Infections/microbiology , Pneumococcal Infections/therapy , Signal Transduction
7.
Cell Microbiol ; 22(2): e13141, 2020 02.
Article in English | MEDLINE | ID: mdl-31709673

ABSTRACT

Extracellular adenosine production is crucial for host resistance against Streptococcus pneumoniae (pneumococcus) and is thought to affect antibacterial immune responses by neutrophils. However, whether extracellular adenosine alters direct host-pathogen interaction remains unexplored. An important determinant for lung infection by S. pneumoniae is its ability to adhere to the pulmonary epithelium. Here we explored whether extracellular adenosine can directly impact bacterial adherence to lung epithelial cells. We found that signaling via A1 adenosine receptor significantly reduced the ability of pneumococci to bind human pulmonary epithelial cells. A1 receptor signaling blocked bacterial binding by reducing the expression of platelet-activating factor receptor, a host protein used by S. pneumoniae to adhere to host cells. In vivo, A1 was required for control of pneumococcal pneumonia as inhibiting it resulted in increased host susceptibility. As S. pneumoniae remain a leading cause of community-acquired pneumonia in the elderly, we explored the role of A1 in the age-driven susceptibility to infection. We found no difference in A1 pulmonary expression in young versus old mice. Strikingly, triggering A1 signaling boosted host resistance of old mice to S. pneumoniae pulmonary infection. This study demonstrates a novel mechanism by which extracellular adenosine modulates resistance to lung infection by targeting bacterial-host interactions.


Subject(s)
Epithelial Cells/microbiology , Platelet Membrane Glycoproteins/metabolism , Pneumonia, Pneumococcal , Receptor, Adenosine A1/metabolism , Receptors, G-Protein-Coupled/metabolism , Streptococcus pneumoniae , Age Factors , Animals , Bacterial Adhesion , Cell Line , Epithelial Cells/cytology , Epithelial Cells/immunology , Host-Pathogen Interactions , Humans , Lung/cytology , Lung/immunology , Lung/microbiology , Mice , Mice, Inbred C57BL , Pneumonia, Pneumococcal/immunology , Pneumonia, Pneumococcal/microbiology , Streptococcus pneumoniae/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...