Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Sep Sci ; 47(8): e2300779, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38682835

ABSTRACT

Vacuum-assisted headspace solid-phase microextraction (Vac-HS-SPME) is a technique used to enhance SPME sampling of semi-volatile organic compounds. Here, it was combined with a high-capacity SPME Arrow, which features a larger volume of extraction phase and a more rugged configuration than traditional extraction fibers. An in-depth assessment of the critical parameters was conducted to achieve optimal extraction of representative compounds from a model solid sample matrix (Ottawa sand). Operational fundamentals investigated included the types of seals needed to create a leak-free environment under vacuum conditions; the magnitude of the vacuum applied and time needed to activate the Vac kinetics; order of sample vial preparation methods (VPMs); and other standard variables associated with extract analysis by gas chromatography-mass spectrometry. When exploring the limits of sample VPMs, results indicated an ideal workflow requires the solid sample to be spiked before sealing the vial, allow the sample to rest overnight, then apply vacuum at a pressure of -677 mbar (out of -789 mbar maximum possible vacuum with pump and compressor used), exerted on the vial for 90 s. This work provides the necessary workflow for the optimization of Vac-HS-SPME sampling of analytes from solid matrices.

2.
J Chromatogr A ; 1680: 463416, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36030566

ABSTRACT

The high abundance of cannabinoids within cannabis samples presents an issue for pesticide testing as cannabinoids are often co-extracted with pesticides using various sample preparation techniques. Cannabinoids may also chromatographically co-elute with moderate polarity pesticides and inhibit the ionization of pesticides when using mass spectrometry. To circumvent these issues, we have developed a new approach to isolate commonly regulated pesticides and cannabinoids from aqueous samples using tunable, crosslinked imidazolium polymeric ionic liquid (PIL)-based sorbent coatings for direct immersion solid-phase microextraction (DI-SPME). The selectivity of four PIL sorbent coatings towards 20 pesticides and six cannabinoids, including cannabidiol and Δ9-THC, was investigated and compared against a commercial PDMS/DVB fiber. Extraction and desorption conditions, including salt content, extraction temperature, pH, extraction time, desorption solvent, and desorption time, were optimized using high-performance liquid chromatography (HPLC) with ultraviolet (UV) detection. Under optimized conditions, the PIL fiber consisting of 1-vinylbenzyl-3-octylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([VBIMC8+][NTf2-]) and 1,12-di(3-vinylbenzylimidazolium)dodecane dibis[(trifluoromethyl)sulfonyl]imide ([(VBIM)2C122+]2[NTf2-]) sorbent coating provided the best selectivity towards pesticides compared to other PILs and the PDMS/DVB fibers and was able to reach limits of detection (LODs) as low as 1 µg/L. When compared to a previously reported PIL-based SPME HPLC-UV method for pesticide analysis, the amount of cannabinoids extracted from the sample was decreased 9-fold while a 4-fold enhancement in the extraction of pesticides was achieved. Additionally, the PIL-based SPME method was applied to samples containing environmentally-relevant concentrations of pesticides and cannabinoids to assess its feasibility for Cannabis quality control testing. Relative recoveries between 95% and 141% were obtained using the PIL sorbent coating while recoveries ranging from 50% to 114% were obtained using the PDMS/DVB fiber.


Subject(s)
Cannabinoids , Ionic Liquids , Pesticides , Chromatography, High Pressure Liquid , Imides , Ionic Liquids/chemistry , Polymers/chemistry , Solid Phase Microextraction/methods
3.
J Sep Sci ; 44(14): 2824-2836, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33989452

ABSTRACT

We report the fabrication of 6-phenylhexylsilane derivatized, sputtered silicon, solid phase microextraction fibers that show parts per trillion detection limits for polyaromatic hydrocarbons, and negligible carry over and phase bleed. Their fabrication involves sputtering silicon on silica fibers under various conditions. Six different fibers were evaluated by generating three different thicknesses of sputtered silicon at two different throw distances, which altered the morphologies of the silicon surfaces. All of the fibers were coated with similar thicknesses of 6-phenylhexylsilane (ca. 2 nm). These fibers were characterized with multiple analytical techniques. The optimum fiber configuration was then used to analyze polyaromatic hydrocarbons via direct immersion, gas chromatography mass spectrometry. Our best fiber for the extraction of low molecular weight polyaromatic hydrocarbons in water had similar performance to that of a commercial fiber. However, our fiber demonstrated ca. 3 times the extraction efficiency for higher molecular weight polyaromatic hydrocarbons. In addition, it outperformed the commercial fiber by showing better linearity, repeatability, and detection limits. A method for analyzing polyaromatic hydrocarbons in baby formula was developed, which showed very good linearity (0.5-125 ppb), repeatability (2-26%), detection limits (0.12-0.81 ppb), and recoveries (103-135%). In addition, our fiber showed much less (negligible) carry over and phase bleed than the commercially available fibers.


Subject(s)
Infant Formula/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Solid Phase Microextraction/methods , Water/chemistry , Gas Chromatography-Mass Spectrometry/methods , Limit of Detection , Mineral Fibers/analysis , Silanes/analysis , Silicon/analysis , Water Pollutants, Chemical/analysis , Water Pollution/analysis
4.
Front Chem ; 9: 619770, 2021.
Article in English | MEDLINE | ID: mdl-33869138

ABSTRACT

The cannabis market is expanding exponentially in the United States. As state-wide legalization increases, so do demands for analytical testing methodologies. One of the main tests conducted on cannabis products is the analysis for terpenes. This research focused on implementation of accelerated solvent extraction (ASE), utilizing surrogate matrix matching, and evaluation of traditional vs. more modern sample introduction techniques for analyzing terpenes via gas chromatography-mass spectrometry (GC-MS). Introduction techniques included Headspace-Syringe (HS-Syringe), HS-Solid Phase Microextraction Arrow (HS-SPME Arrow), Direct Immersion-SPME Arrow (DI-SPME Arrow), and Liquid Injection-Syringe (LI-Syringe). The LI-Syringe approach was deemed the most straightforward and robust method with terpene working ranges of 0.04-5.12 µg/mL; r 2 values of 0.988-0.996 (0.993 average); limit of quantitation values of 0.017-0.129 µg/mL (0.047 average); analytical precisions of 2.58-9.64% RSD (1.56 average); overall ASE-LI-Syringe-GC-MS method precisions of 1.73-14.6% RSD (4.97 average); and % recoveries of 84.6-98.9% (90.2 average) for the 23 terpenes of interest. Sample workflows and results are discussed, with an evaluation of the advantages/limitations of each approach and opportunities for future work.

5.
J Chromatogr A ; 1623: 461065, 2020 Jul 19.
Article in English | MEDLINE | ID: mdl-32448558

ABSTRACT

We report the preparation of high performance, sputtered, polydimethylsiloxane (PDMS)-coated solid phase microextraction (SPME) fibers that show negligible carry-over and phase bleed. This process involves sputtering silicon onto silica fibers and functionalizing the resulting porous nanostructures with ultrathin films of vapor-deposited PDMS. Different thicknesses of silicon (0.25, 0.8, and 1.8 µm) and PDMS (8, 16, and 36 nm) were produced and their extraction efficiencies evaluated. The deposition of PDMS was confirmed by time-of-fight secondary ion mass spectrometry (ToF-SIMS), X-ray photoelectron spectroscopy (XPS), spectroscopic ellipsometry (SE), and contact angle goniometry on model, planar silicon substrates. These fibers were investigated using direct immersion SPME coupled with gas chromatography-mass spectrometry (GC-MS) analysis of a series of polycyclic aromatic hydrocarbons (PAHs), which are carcinogenic pollutants. The 1.8 µm thick silicon coating with 16 nm of PDMS (Si (1.8 µm)/PDMS (16 nm)) produced the best response among the combinations tested. Conditions for the extraction of PAHs with this fiber were optimized and its extraction performance was compared to that of a commercial 7 µm PDMS fiber. The linearity (1-110 µgL-1), repeatability (RSD%, n = 3) (17% ave.), and minimum detection limits (0.6-1.5 µgL-1) of the sputtered fibers were determined and found to be superior to the commercial 7 µm PDMS fiber in many respects. Carry-over and phase bleed from commercial PDMS-based SPME fibers are two of their major drawbacks, which decrease their lifetimes and usefulness. Minimal carry-over and phase bleed were observed for our sputtered PDMS-coated fibers. In particular, our fiber only shows 12% of the phase bleed of the comparable commercial fiber. In addition, it shows no carry-over for analytes with retention times greater than pyrene, and only 5% of the carry-over of the other analytes. Our fibers could be used for at least 300 injections without any significant loss of performance.


Subject(s)
Dimethylpolysiloxanes/chemistry , Silicon/chemistry , Solid Phase Microextraction/methods , Gas Chromatography-Mass Spectrometry , Limit of Detection , Photoelectron Spectroscopy , Polycyclic Aromatic Hydrocarbons/analysis , Temperature , Time Factors , Water/chemistry , Water Pollutants, Chemical/analysis
6.
J Chromatogr A ; 1418: 192-199, 2015 Oct 30.
Article in English | MEDLINE | ID: mdl-26422308

ABSTRACT

Electronic cigarettes (e-cigarettes) are growing in popularity exponentially. Despite their ever-growing acceptance, their aerosol has not been fully characterized. The current study focused on evaluating e-cigarette solutions and their resultant aerosol for potential differences. A simple sampling device was developed to draw e-cigarette aerosol into a multi-sorbent thermal desorption (TD) tube, which was then thermally extracted and analyzed via a gas chromatography (GC) mass spectrometry (GC-MS) method. This novel application provided detectable levels of over one hundred fifteen volatile organic compounds (VOCs) and semivolatile organic compounds (SVOCs) from a single 40mL puff. The aerosol profiles from four commercially available e-cigarettes were compared to their respective solution profiles with the same GC-MS method. Solution profiles produced upwards of sixty four unidentified and identified (some only tentatively) constituents and aerosol profiles produced upwards of eighty two compounds. Results demonstrated distinct analyte profiles between liquid and aerosol samples. Most notably, formaldehyde, acetaldehyde, acrolein, and siloxanes were found in the aerosol profiles; however, these compounds were never present in the solutions. These results implicate the aerosolization process in the formation of compounds not found in solutions; have potential implications for human health; and stress the need for an emphasis on electronic cigarette aerosol testing.


Subject(s)
Electronic Nicotine Delivery Systems , Volatile Organic Compounds/analysis , Acetaldehyde/analysis , Acrolein/analysis , Aerosols , Electronic Nicotine Delivery Systems/adverse effects , Formaldehyde/analysis , Gas Chromatography-Mass Spectrometry/methods , Humans , Siloxanes/analysis
7.
Environ Sci Technol ; 49(21): 13067-74, 2015 Nov 03.
Article in English | MEDLINE | ID: mdl-26444830

ABSTRACT

Emissions of speciated volatile organic compounds (VOCs), including mobile source air toxics (MSATs), were measured in vehicle exhaust from three light-duty spark ignition vehicles operating on summer and winter grade gasoline (E0) and ethanol blended (E10 and E85) fuels. Vehicle testing was conducted using a three-phase LA92 driving cycle in a temperature-controlled chassis dynamometer at two ambient temperatures (-7 and 24 °C). The cold start driving phase and cold ambient temperature increased VOC and MSAT emissions up to several orders of magnitude compared to emissions during other vehicle operation phases and warm ambient temperature testing, respectively. As a result, calculated ozone formation potentials (OFPs) were 7 to 21 times greater for the cold starts during cold temperature tests than comparable warm temperature tests. The use of E85 fuel generally led to substantial reductions in hydrocarbons and increases in oxygenates such as ethanol and acetaldehyde compared to E0 and E10 fuels. However, at the same ambient temperature, the VOC emissions from the E0 and E10 fuels and OFPs from all fuels were not significantly different. Cold temperature effects on cold start MSAT emissions varied by individual MSAT compound, but were consistent over a range of modern spark ignition vehicles.


Subject(s)
Cold Temperature , Ethanol/analysis , Gasoline/analysis , Motor Vehicles , Vehicle Emissions/analysis , Volatile Organic Compounds/analysis , Automobile Driving , Ozone/analysis , Temperature
8.
Anal Chem ; 85(16): 7882-8, 2013 Aug 20.
Article in English | MEDLINE | ID: mdl-23931240

ABSTRACT

The costly damage airborne trimethylsilanol (TMS) exacts on optics in the semiconductor industry has resulted in the demand for accurate and reliable methods for measuring TMS at trace levels (i.e., parts per trillion, volume per volume of air [ppt(v)] [~ng/m(3)]). In this study I developed a whole air canister-based approach for field sampling trimethylsilanol in air, as well as a preconcentration gas chromatography/mass spectrometry laboratory method for analysis. The results demonstrate clean canister blanks (0.06 ppt(v) [0.24 ng/m(3)], which is below the detection limit), excellent linearity (a calibration relative response factor relative standard deviation [RSD] of 9.8%) over a wide dynamic mass range (1-100 ppt(v)), recovery/accuracy of 93%, a low selected ion monitoring method detection limit of 0.12 ppt(v) (0.48 ng/m(3)), replicate precision of 6.8% RSD, and stability (84% recovery) out to four days of storage at room temperature. Samples collected at two silicon wafer fabrication facilities ranged from 10.0 to 9120 ppt(v) TMS and appear to be associated with the use of hexamethyldisilazane priming agent. This method will enable semiconductor cleanroom managers to monitor and control for trace levels of trimethylsilanol.


Subject(s)
Air Pollution, Indoor/analysis , Gas Chromatography-Mass Spectrometry/methods , Semiconductors , Trimethylsilyl Compounds/analysis , Limit of Detection , Reproducibility of Results
9.
Drug Metab Dispos ; 36(4): 745-52, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18227148

ABSTRACT

Human cytochrome P450 1B1 (CYP1B1) plays a critical role in the metabolic activation of a variety of procarcinogens, including 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). The existence of human CYP1B1 missense genetic variants has been demonstrated, but their activities in metabolizing PhIP are unknown. In this study, we expressed 15 naturally occurring CYP1B1 variants (with either single or multiple amino acid substitutions) and determined their activity changes in metabolizing PhIP to its two major metabolites, 2-hydroxyamino-PhIP and 4'-hydroxy-PhIP. Although the PhIP-metabolizing activities of four variants (Ala(119)Ser, Pro(379)Leu, Ala(443)Gly, Arg(48)Gly/Leu(432)Val) were comparable with that of the expressed wild-type CYP1B1, five variants (Trp(57)Cys, Gly(61)Glu, Arg(48)Gly/Ala(119)Ser, Arg(48)Gly/Ala(119)Ser/Leu(432)Val, Arg(48)Gly/Ala(119)Ser/Leu(432)Val/Ala(443)Gly) exhibited more than 2-fold decrease in activity and a reduction in the catalytic efficiency (V(max)/K(m)) for both N- and 4-hydroxylation of PhIP. Six variants (Gly(365)Trp, Glu(387)Lys, Arg(390)His, Pro(437)Leu, Asn(453)Ser, Arg(469)Trp) showed little activity in PhIP metabolism, but the molecular mechanisms involved are apparently different. The microsomal CYP1B1 protein level was significantly decreased for the Trp(365), Lys(387), and His(390) variants and was not detectable for the Ser(453) variant. In contrast, there was no difference between the Trp(469) variant and the wild-type in the microsomal CYP1B1 protein level and P450 content but the Trp(469) variant totally lost its metabolic activity toward PhIP. The Leu(437) variant also had a substantial amount of CYP1B1 protein in the microsomes, but there was a lack of detectable P450 peak and activity. Our results should be useful in selecting appropriate CYP1B1 variants as cancer susceptibility biomarkers for human population studies related to PhIP exposure.


Subject(s)
Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Genetic Variation/genetics , Imidazoles/metabolism , Animals , Aryl Hydrocarbon Hydroxylases , Cell Line , Cytochrome P-450 CYP1B1 , Humans , Imidazoles/chemistry , Insecta , Metabolic Networks and Pathways/physiology , Microsomes/metabolism , Rats , Species Specificity
10.
Environ Sci Technol ; 41(2): 580-5, 2007 Jan 15.
Article in English | MEDLINE | ID: mdl-17310725

ABSTRACT

Airborne aldehyde and ketone (carbonyl) sampling methodologies based on derivatization with 2,4-dinitrophenylhydrazine (DNPH)-coated solid sorbents could unequivocally be considered the "gold" standard. Originally developed in the late 1970s, these methods have been extensively evaluated and developed up to the present day. However, these methods have been inadequately evaluated for the long-term (i.e., 24 h or greater) sampling collection efficiency (CE) of carbonyls other than formaldehyde. The current body of literature fails to demonstrate that DNPH-coated solid sorbent sampling methods have acceptable CEs for the long-term sampling of carbonyls other than formaldehyde. Despite this, such methods are widely used to report the concentrations of multiple carbonyls from long-term sampling, assuming approximately 100% CEs. Laboratory experiments were conducted in this study to evaluate the long-term formaldehyde and acetaldehyde sampling CEs for several commonly used DNPH-coated solid sorbents. Results from sampling known concentrations of formaldehyde and acetaldehyde generated in a dynamic atmosphere generation system demonstrate that the 24-hour formaldehyde sampling CEs ranged from 83 to 133%, confirming the findings made in previous studies. However, the 24-hour acetaldehyde sampling CEs ranged from 1 to 62%. Attempts to increase the acetaldehyde CEs by adding acid to the samples post sampling were unsuccessful. These results indicate that assuming approximately 100% CEs for 24-hour acetaldehyde sampling, as commonly done with DNPH-coated solid sorbent methods, would substantially under estimate acetaldehyde concentrations.


Subject(s)
Acetaldehyde/analysis , Acetaldehyde/chemistry , Air Pollutants/analysis , Environmental Monitoring/instrumentation , Phenylhydrazines/chemistry , Adsorption , Chromatography, High Pressure Liquid , Evaluation Studies as Topic , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...