Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Kidney Int ; 105(4): 684-701, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38519239

ABSTRACT

The Kidney Disease: Improving Global Outcomes (KDIGO) Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease (CKD) updates the KDIGO 2012 guideline and has been developed with patient partners, clinicians, and researchers around the world, using robust methodology. This update, based on a substantially broader base of evidence than has previously been available, reflects an exciting time in nephrology. New therapies and strategies have been tested in large and diverse populations that help to inform care; however, this guideline is not intended for people receiving dialysis nor those who have a kidney transplant. The document is sensitive to international considerations, CKD across the lifespan, and discusses special considerations in implementation. The scope includes chapters dedicated to the evaluation and risk assessment of people with CKD, management to delay CKD progression and its complications, medication management and drug stewardship in CKD, and optimal models of CKD care. Treatment approaches and actionable guideline recommendations are based on systematic reviews of relevant studies and appraisal of the quality of the evidence and the strength of recommendations which followed the "Grading of Recommendations Assessment, Development, and Evaluation" (GRADE) approach. The limitations of the evidence are discussed. The guideline also provides practice points, which serve to direct clinical care or activities for which a systematic review was not conducted, and it includes useful infographics and describes an important research agenda for the future. It targets a broad audience of people with CKD and their healthcare, while being mindful of implications for policy and payment.


Subject(s)
Kidney Transplantation , Nephrology , Renal Insufficiency, Chronic , Humans , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/therapy , Renal Insufficiency, Chronic/complications , Kidney Transplantation/adverse effects , Renal Dialysis/adverse effects
2.
Digit Biomark ; 2(1): 11-30, 2018.
Article in English | MEDLINE | ID: mdl-29938250

ABSTRACT

BACKGROUND: The use of mobile devices in clinical research has advanced substantially in recent years due to the rapid pace of technology development. With an overall aim of informing the future use of mobile devices in interventional clinical research to measure primary outcomes, we conducted a systematic review of the use of and clinical outcomes measured by mobile devices (mobile outcomes) in observational and interventional clinical research. METHOD: We conducted a PubMed search using a range of search terms to retrieve peer-reviewed articles on clinical research published between January 2010 and May 2016 in which mobile devices were used to measure study outcomes. We screened each publication for specific inclusion and exclusion criteria. We then identified and qualitatively summarized the use of mobile outcome assessments in clinical research, including the type and design of the study, therapeutic focus, type of mobile device(s) used, and specific mobile outcomes reported. RESULTS: The search retrieved 2,530 potential articles of interest. After screening, 88 publications remained. Twenty-five percent of the publications (n = 22) described mobile outcomes used in interventional research, and the rest (n = 66) described observational clinical research. Thirteen therapeutic areas were represented. Five categories of mobile devices were identified: (1) inertial sensors, (2) biosensors, (3) pressure sensors and walkways, (4) medication adherence monitors, and (5) location monitors; inertial sensors/accelerometers were most common (reported in 86% of the publications). Among the variety of mobile outcomes, various assessments of physical activity were most common (reported in 74% of the publications). Other mobile outcomes included assessments of sleep, mobility, and pill adherence, as well as biomarkers assessed using a mobile device, including cardiac measures, glucose, gastric reflux, respiratory measures, and intensity of head-related injury. CONCLUSION: Mobile devices are being widely used in clinical research to assess outcomes, although their use in interventional research to assess therapeutic effectiveness is limited. For mobile devices to be used more frequently in pivotal interventional research - such as trials informing regulatory decision-making - more focus should be placed on: (1) consolidating the evidence supporting the clinical meaningfulness of specific mobile outcomes, and (2) standardizing the use of mobile devices in clinical research to measure specific mobile outcomes (e.g., data capture frequencies, placement of device). To that aim, this manuscript offers a broad overview of the various mobile outcome assessments currently used in observational and interventional research, and categorizes and consolidates this information for researchers interested in using mobile devices to assess outcomes in interventional research.

3.
Transplant Res ; 2(1): 7, 2013 May 06.
Article in English | MEDLINE | ID: mdl-23641902

ABSTRACT

BACKGROUND: Kidney transplantation is the best treatment for patients with end-stage renal failure, but uncertainty remains about the best immunosuppression strategy. Long-term graft survival has not improved substantially, and one possible explanation is calcineurin inhibitor (CNI) nephrotoxicity. CNI exposure could be minimized by using more potent induction therapy or alternative maintenance therapy to remove CNIs completely. However, the safety and efficacy of such strategies are unknown. METHODS/DESIGN: The Campath, Calcineurin inhibitor reduction and Chronic allograft nephropathy (3C) Study is a multicentre, open-label, randomized controlled trial with 852 participants which is addressing two important questions in kidney transplantation. The first question is whether a Campath (alemtuzumab)-based induction therapy strategy is superior to basiliximab-based therapy, and the second is whether, from 6 months after transplantation, a sirolimus-based maintenance therapy strategy is superior to tacrolimus-based therapy. Recruitment is complete, and follow-up will continue for around 5 years post-transplant. The primary endpoint for the induction therapy comparison is biopsy-proven acute rejection by 6 months, and the primary endpoint for the maintenance therapy comparison is change in estimated glomerular filtration rate from baseline to 2 years after transplantation. The study is sponsored by the University of Oxford and endorsed by the British Transplantation Society, and 18 centers for adult kidney transplant are participating. DISCUSSION: Late graft failure is a major issue for kidney-transplant recipients. If our hypothesis that minimizing CNI exposure with Campath-based induction therapy and/or an elective conversion to sirolimus-based maintenance therapy can improve long-term graft function and survival is correct, then patients should experience better graft function for longer. A positive outcome could change clinical practice in kidney transplantation. TRIAL REGISTRATION: ClinicalTrials.gov, NCT01120028 and ISRCTN88894088.

SELECTION OF CITATIONS
SEARCH DETAIL
...