Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 63(1): 66-87, 2020 01 09.
Article in English | MEDLINE | ID: mdl-31804826

ABSTRACT

UDP-3-O-((R)-3-hydroxymyristoyl)-N-glucosamine deacetylase (LpxC) is as an attractive target for the discovery and development of novel antibacterial drugs to address the critical medical need created by multidrug resistant Gram-negative bacteria. By using a scaffold hopping approach on a known family of methylsulfone hydroxamate LpxC inhibitors, several hit series eliciting potent antibacterial activities against Enterobacteriaceae and Pseudomonas aeruginosa were identified. Subsequent hit-to-lead optimization, using cocrystal structures of inhibitors bound to Pseudomonas aeruginosa LpxC as guides, resulted in the discovery of multiple chemical series based on (i) isoindolin-1-ones, (ii) 4,5-dihydro-6H-thieno[2,3-c]pyrrol-6-ones, and (iii) 1,2-dihydro-3H-pyrrolo[1,2-c]imidazole-3-ones. Synthetic methods, antibacterial activities and relative binding affinities, as well as physicochemical properties that allowed compound prioritization are presented. Finally, in vivo properties of lead molecules which belong to the most promising pyrrolo-imidazolone series, such as 18d, are discussed.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Anti-Bacterial Agents/therapeutic use , Enzyme Inhibitors/therapeutic use , Escherichia coli Infections/drug therapy , Gram-Negative Bacteria/drug effects , Hydroxamic Acids/therapeutic use , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacokinetics , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Escherichia coli/drug effects , Female , Hydroxamic Acids/chemical synthesis , Hydroxamic Acids/pharmacokinetics , Klebsiella pneumoniae/drug effects , Mice, Inbred ICR , Microbial Sensitivity Tests , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/enzymology , Pyrroles/chemical synthesis , Pyrroles/pharmacokinetics , Pyrroles/therapeutic use
2.
J Med Chem ; 63(1): 88-102, 2020 01 09.
Article in English | MEDLINE | ID: mdl-31804829

ABSTRACT

LpxC inhibitors were optimized starting from lead compounds with limited efficacy and solubility and with the goal to provide new options for the treatment of serious infections caused by Gram-negative pathogens in hospital settings. To enable the development of an aqueous formulation for intravenous administration of the drug at high dose, improvements in both solubility and antibacterial activity in vivo were prioritized early on. This lead optimization program resulted in the discovery of compounds such as 13 and 30, which exhibited high solubility and potent efficacy against Gram-negative pathogens in animal infection models.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Anti-Bacterial Agents/therapeutic use , Enzyme Inhibitors/therapeutic use , Escherichia coli Infections/drug therapy , Hydroxamic Acids/therapeutic use , Administration, Intravenous , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacokinetics , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Gram-Negative Bacteria/drug effects , Hepatocytes/metabolism , Hydroxamic Acids/administration & dosage , Hydroxamic Acids/chemical synthesis , Hydroxamic Acids/pharmacokinetics , Mice , Microbial Sensitivity Tests , Molecular Structure , Rats , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...