Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Robot AI ; 10: 1287417, 2023.
Article in English | MEDLINE | ID: mdl-38263958

ABSTRACT

In current telerobotics and telemanipulator applications, operators must perform a wide variety of tasks, often with a high risk associated with failure. A system designed to generate data-based behavioural estimations using observed operator features could be used to reduce risks in industrial teleoperation. This paper describes a non-invasive bio-mechanical feature capture method for teleoperators used to trial novel human-error rate estimators which, in future work, are intended to improve operational safety by providing behavioural and postural feedback to the operator. Operator monitoring studies were conducted in situ using the MASCOT teleoperation system at UKAEA RACE; the operators were given controlled tasks to complete during observation. Building upon existing works for vehicle-driver intention estimation and robotic surgery operator analysis, we used 3D point-cloud data capture using a commercially available depth camera to estimate an operator's skeletal pose. A total of 14 operators were observed and recorded for a total of approximately 8 h, each completing a baseline task and a task designed to induce detectable but safe collisions. Skeletal pose was estimated, collision statistics were recorded, and questionnaire-based psychological assessments were made, providing a database of qualitative and quantitative data. We then trialled data-driven analysis by using statistical and machine learning regression techniques (SVR) to estimate collision rates. We further perform and present an input variable sensitivity analysis for our selected features.

2.
Front Robot AI ; 9: 932538, 2022.
Article in English | MEDLINE | ID: mdl-36504493

ABSTRACT

Tele-manipulation is indispensable for the nuclear industry since teleoperated robots cancel the radiation hazard problem for the operator. The majority of the teleoperated solutions used in the nuclear industry rely on bilateral teleoperation, utilizing a variation of the 4-channel architecture, where the motion and force signals of the local and remote robots are exchanged in the communication channel. However, the performance limitation of teleoperated robots for nuclear decommissioning tasks is not clearly answered in the literature. In this study, we assess the task performance in bilateral tele-manipulation for radiation surveying in gloveboxes and compare it to radiation surveying of a glovebox operator. To analyze the performance, an experimental setup suitable for human operation (manual operation) and tele-manipulation is designed. Our results showed that a current commercial off-the-shelf (COTS) teleoperated robotic manipulation solution is flexible, yet insufficient, as its task performance is significantly lower when compared to manual operation and potentially hazardous for the equipment inside the glovebox. Finally, we propose a set of potential solutions, derived from both our observations and expert interviews, that could improve the performance of teleoperation systems in glovebox environments in future work.

3.
Article in English | MEDLINE | ID: mdl-35853061

ABSTRACT

In this article, we propose an algorithm that combines actor-critic-based off-policy method with consensus-based distributed training to deal with multiagent deep reinforcement learning problems. Specifically, convergence analysis of a consensus algorithm for a type of nonlinear system with a Lyapunov method is developed, and we use this result to analyze the convergence properties of the actor training parameters and the critic training parameters in our algorithm. Through the convergence analysis, it can be verified that all agents will converge to the same optimal model as the training time goes to infinity. To validate the implementation of our algorithm, a multiagent training framework is proposed to train each Universal Robot 5 (UR5) robot arm to reach the random target position. Finally, experiments are provided to demonstrate the effectiveness and feasibility of the proposed algorithm.

4.
Front Robot AI ; 7: 6, 2020.
Article in English | MEDLINE | ID: mdl-33501175

ABSTRACT

Dramatic cost savings, safety improvements and accelerated nuclear decommissioning are all possible through the application of robotic solutions. Remotely-controlled systems with modern sensing capabilities, actuators and cutting tools have the potential for use in extremely hazardous environments, but operation in facilities used for handling radioactive material presents complex challenges for electronic components. We present a methodology and results obtained from testing in a radiation cell in which we demonstrate the operation of a robotic arm controlled using modern electronics exposed at 10 Gy/h to simulate radioactive conditions in the most hazardous nuclear waste handling facilities.

5.
Front Robot AI ; 7: 499056, 2020.
Article in English | MEDLINE | ID: mdl-33501295

ABSTRACT

The use of a robotic arm manipulator as a platform for coincident radiation mapping and laser profiling of radioactive sources on a flat surface is investigated in this work. A combined scanning head, integrating a micro-gamma spectrometer and Time of Flight (ToF) sensor were moved in a raster scan pattern across the surface, autonomously undertaken by the robot arm over a 600 × 260 mm survey area. A series of radioactive sources of different emission intensities were scanned in different configurations to test the accuracy and sensitivity of the system. We demonstrate that in each test configuration the system was able to generate a centimeter accurate 3D model complete with an overlaid radiation map detailing the emitted radiation intensity and the corrected surface dose rate.

6.
IEEE Trans Neural Netw ; 18(2): 449-65, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17385631

ABSTRACT

This paper presents a conditioning scheme for a linear control system which is enhanced by a neural network (NN) controller and subjected to a control signal amplitude limit. The NN controller improves the performance of the linear control system by directly estimating an actuator-matched, unmodeled, nonlinear disturbance, in closed-loop, and compensating for it. As disturbances are generally known to be bounded, the nominal NN-control element is modified to keep its output below the disturbance bound. The linear control element is conditioned by an antiwindup (AW) compensator which ensures performance close to the nominal controller and swift recovery from saturation. For this, the AW compensator proposed is of low order, designed using convex linear matrix inequalities (LMIs) optimization.


Subject(s)
Algorithms , Information Storage and Retrieval/methods , Linear Models , Neural Networks, Computer , Pattern Recognition, Automated/methods , Artificial Intelligence , Computer Simulation , Feedback
SELECTION OF CITATIONS
SEARCH DETAIL
...