Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 13(16)2021 Aug 17.
Article in English | MEDLINE | ID: mdl-34439283

ABSTRACT

BACKGROUND: Mass spectrometry-based metabolomics approaches provide an immense opportunity to enhance our understanding of the mechanisms that underpin the cellular reprogramming of cancers. Accurate comparative metabolic profiling of heterogeneous conditions, however, is still a challenge. METHODS: Measuring both intracellular and extracellular metabolite concentrations, we constrain four instances of a thermodynamic genome-scale metabolic model of the HCT116 colorectal carcinoma cell line to compare the metabolic flux profiles of cells that are either sensitive or resistant to ruthenium- or platinum-based treatments with BOLD-100/KP1339 and oxaliplatin, respectively. RESULTS: Normalizing according to growth rate and normalizing resistant cells according to their respective sensitive controls, we are able to dissect metabolic responses specific to the drug and to the resistance states. We find the normalization steps to be crucial in the interpretation of the metabolomics data and show that the metabolic reprogramming in resistant cells is limited to a select number of pathways. CONCLUSIONS: Here, we elucidate the key importance of normalization steps in the interpretation of metabolomics data, allowing us to uncover drug-specific metabolic reprogramming during acquired metal-drug resistance.

2.
Front Plant Sci ; 12: 668512, 2021.
Article in English | MEDLINE | ID: mdl-33936157

ABSTRACT

Plants in natural environments receive light through sunflecks, the duration and distribution of these being highly variable across the day. Consequently, plants need to adjust their photosynthetic processes to avoid photoinhibition and maximize yield. Changes in the composition of the photosynthetic apparatus in response to sustained changes in the environment are referred to as photosynthetic acclimation, a process that involves changes in protein content and composition. Considering this definition, acclimation differs from regulation, which involves processes that alter the activity of individual proteins over short-time periods, without changing the abundance of those proteins. The interconnection and overlapping of the short- and long-term photosynthetic responses, which can occur simultaneously or/and sequentially over time, make the study of long-term acclimation to fluctuating light in plants challenging. In this review we identify short-term responses of plants to fluctuating light that could act as sensors and signals for acclimation responses, with the aim of understanding how plants integrate environmental fluctuations over time and tailor their responses accordingly. Mathematical modeling has the potential to integrate physiological processes over different timescales and to help disentangle short-term regulatory responses from long-term acclimation responses. We review existing mathematical modeling techniques for studying photosynthetic responses to fluctuating light and propose new methods for addressing the topic from a holistic point of view.

3.
Plant Cell Environ ; 44(1): 171-185, 2021 01.
Article in English | MEDLINE | ID: mdl-32981099

ABSTRACT

Photosynthesis is especially sensitive to environmental conditions, and the composition of the photosynthetic apparatus can be modulated in response to environmental change, a process termed photosynthetic acclimation. Previously, we identified a role for a cytosolic fumarase, FUM2 in acclimation to low temperature in Arabidopsis thaliana. Mutant lines lacking FUM2 were unable to acclimate their photosynthetic apparatus to cold. Here, using gas exchange measurements and metabolite assays of acclimating and non-acclimating plants, we show that acclimation to low temperature results in a change in the distribution of photosynthetically fixed carbon to different storage pools during the day. Proteomic analysis of wild-type Col-0 Arabidopsis and of a fum2 mutant, which was unable to acclimate to cold, indicates that extensive changes occurring in response to cold are affected in the mutant. Metabolic and proteomic data were used to parameterize metabolic models. Using an approach called flux sampling, we show how the relative export of triose phosphate and 3-phosphoglycerate provides a signal of the chloroplast redox state that could underlie photosynthetic acclimation to cold.


Subject(s)
Arabidopsis/metabolism , Chloroplasts/metabolism , Photosynthesis , Acclimatization/physiology , Arabidopsis/physiology , Arabidopsis Proteins/metabolism , Chloroplasts/physiology , Cold Temperature , Cold-Shock Response , Fumarate Hydratase/metabolism , Photosynthesis/physiology , Signal Transduction
4.
Phys Biol ; 17(6): 065008, 2020 10 13.
Article in English | MEDLINE | ID: mdl-32702678

ABSTRACT

The global spread of coronavirus disease 2019 (COVID-19) is overwhelming many health-care systems. As a result, epidemiological models are being used to inform policy on how to effectively deal with this pandemic. The majority of existing models assume random diffusion but do not take into account differences in the amount of interactions between individuals, i.e. the underlying human interaction network, whose structure is known to be scale-free. Here, we demonstrate how this network of interactions can be used to predict the spread of the virus and to inform policy on the most successful mitigation and suppression strategies. Using stochastic simulations in a scale-free network, we show that the epidemic can propagate for a long time at a low level before the number of infected individuals suddenly increases markedly, and that this increase occurs shortly after the first hub is infected. We further demonstrate that mitigation strategies that target hubs are far more effective than strategies that randomly decrease the number of connections between individuals. Although applicable to infectious disease modelling in general, our results emphasize how network science can improve the predictive power of current COVID-19 epidemiological models.


Subject(s)
COVID-19/epidemiology , Humans , Models, Statistical , Pandemics , Population Dynamics , SARS-CoV-2/isolation & purification , Social Interaction
5.
Photosynth Res ; 145(1): 5-14, 2020 Jul.
Article in English | MEDLINE | ID: mdl-31654195

ABSTRACT

Light response curves (LRCs) describe how the rate of photosynthesis varies as a function of light. They provide information on the maximum photosynthetic capacity, quantum yield, light compensation point and leaf radiation use efficiency of leaves. Light response curves are widely used to capture photosynthetic phenotypes in response to changing environmental conditions. However, models describing these are predominantly empirical and do not attempt to explain behaviour at a mechanistic level. Here, we use modelling to understand the metabolic changes required for photosynthetic acclimation to changing environmental conditions. Using a simple kinetic model, we predicted LRCs across the physiological temperature range of Arabidopsis thaliana and confirm these using experimental data. We use our validated metabolic model to make novel predictions about the metabolic changes of temperature acclimation. We demonstrate that NADPH utilization are enhanced in warm-acclimated plants, whereas both NADPH and CO2 utilization is enhanced in cold-acclimated plants. We demonstrate how different metabolic acclimation strategies may lead to the same photosynthetic response across environmental change. We further identify that certain metabolic acclimation strategies, such as NADPH utilization, are only triggered when plants are moved beyond a threshold high or low temperature.


Subject(s)
Acclimatization , Arabidopsis/physiology , Models, Theoretical , Photosynthesis , Arabidopsis/radiation effects , Plant Leaves/physiology , Plant Leaves/radiation effects , Temperature
6.
NPJ Syst Biol Appl ; 5: 32, 2019.
Article in English | MEDLINE | ID: mdl-31482008

ABSTRACT

The development of high-throughput 'omic techniques has sparked a rising interest in genome-scale metabolic models, with applications ranging from disease diagnostics to crop adaptation. Efficient and accurate methods are required to analyze large metabolic networks. Flux sampling can be used to explore the feasible flux solutions in metabolic networks by generating probability distributions of steady-state reaction fluxes. Unlike other methods, flux sampling can be used without assuming a particular cellular objective. We have undertaken a rigorous comparison of several sampling algorithms and concluded that the coordinate hit-and-run with rounding (CHRR) algorithm is the most efficient based on both run-time and multiple convergence diagnostics. We demonstrate the power of CHRR by using it to study the metabolic changes that underlie photosynthetic acclimation to cold of Arabidopsis thaliana plant leaves. In combination with experimental measurements, we show how the regulated interplay between diurnal starch and organic acid accumulation defines the plant acclimation process. We confirm fumarate accumulation as a requirement for cold acclimation and further predict γ-aminobutyric acid to have a key role in metabolic signaling under cold conditions. These results demonstrate how flux sampling can be used to analyze the feasible flux solutions across changing environmental conditions, whereas eliminating the need to make assumptions which introduce observer bias.


Subject(s)
Metabolic Flux Analysis/methods , Metabolic Networks and Pathways/physiology , Acclimatization/genetics , Acclimatization/physiology , Adaptation, Physiological/genetics , Adaptation, Physiological/physiology , Algorithms , Arabidopsis/genetics , Arabidopsis/metabolism , Cold Temperature , Cold-Shock Response/physiology , Computer Simulation , Genome , Metabolic Networks and Pathways/genetics , Models, Biological , Plant Leaves/metabolism
7.
J Exp Bot ; 70(12): 3043-3056, 2019 06 28.
Article in English | MEDLINE | ID: mdl-30997505

ABSTRACT

Plants adjust their photosynthetic capacity in response to their environment in a way that optimizes their yield and fitness. There is growing evidence that this acclimation is a response to changes in the leaf metabolome, but the extent to which these are linked and how this is optimized remain poorly understood. Using as an example the metabolic perturbations occurring in response to cold, we define the different stages required for acclimation, discuss the evidence for a metabolic temperature sensor, and suggest further work towards designing climate-smart crops. In particular, we discuss how constraint-based and kinetic metabolic modelling approaches can be used to generate targeted hypotheses about relevant pathways, and argue that a stronger integration of experimental and in silico studies will help us to understand the tightly regulated interplay of carbon partitioning and resource allocation required for photosynthetic acclimation to different environmental conditions.


Subject(s)
Climate , Crops, Agricultural/metabolism , Photosynthesis , Plant Leaves/metabolism , Acclimatization , Light
SELECTION OF CITATIONS
SEARCH DETAIL
...