Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Appl Microbiol Biotechnol ; 101(6): 2589-2601, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27909745

ABSTRACT

Dechlorination patterns of three tetrachlorobenzene isomers, 1,2,3,4-, 1,2,3,5-, and 1,2,4,5-TeCB, were studied in anoxic microcosms derived from contaminated harbor sludge. The removal of doubly, singly, and un-flanked chlorine atoms was noted in 1,2,3,4- and 1,2,3,5-TeCB fed microcosms, whereas only singly flanked chlorine was removed in 1,2,4,5-TeCB microcosms. The thermodynamically more favorable reactions were selectively followed by the enriched cultures with di- and/or mono-chlorobenzene as the main end products of the reductive dechlorination of all three isomers. Based on quantitative PCR analysis targeting 16S rRNA genes of known organohalide-respiring bacteria, the growth of Dehalococcoides was found to be associated with the reductive dechlorination of all three isomers, while growth of Dehalobacter, another known TeCB dechlorinator, was only observed in one 1,2,3,5-TeCB enriched microcosm among biological triplicates. Numbers of Desulfitobacterium and Geobacter as facultative dechlorinators were rather stable suggesting that they were not (directly) involved in the observed TeCB dechlorination. Bacterial community profiling suggested bacteria belonging to the phylum Bacteroidetes and the order Clostridiales as well as sulfate-reducing members of the class Deltaproteobacteria as putative stimulating guilds that provide electron donor and/or organic cofactors to fastidious dechlorinators. Our results provide a better understanding of thermodynamically preferred TeCB dechlorinating pathways in harbor environments and microbial guilds enriched and active in anoxic TeCB dechlorinating microcosms.


Subject(s)
Chlorine/metabolism , Chlorobenzenes/metabolism , DNA, Bacterial/genetics , Microbial Consortia/genetics , Sewage/microbiology , Water Pollutants, Chemical/metabolism , Biodegradation, Environmental , Chlorine/isolation & purification , Chlorobenzenes/isolation & purification , Chloroflexi/genetics , Chloroflexi/metabolism , Desulfitobacterium/genetics , Desulfitobacterium/metabolism , Geobacter/genetics , Geobacter/metabolism , Humans , Peptococcaceae/genetics , Peptococcaceae/metabolism , Sewage/chemistry , Stereoisomerism , Thermodynamics , Water Pollutants, Chemical/isolation & purification
2.
Appl Microbiol Biotechnol ; 100(17): 7361-76, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27475808

ABSTRACT

In recent years, the application of pesticide biodegradation in remediation of pesticide-contaminated matrices moved from remediating bulk soil to remediating and mitigating pesticide pollution of groundwater and surface water bodies. Specialized pesticide-degrading microbial populations are used, which can be endogenous to the ecosystem of interest or introduced by means of bioaugmentation. It involves (semi-)natural ecosystems like agricultural fields, vegetated filter strips, and riparian wetlands and man-made ecosystems like on-farm biopurification systems, groundwater treatment systems, and dedicated modules in drinking water treatment. Those ecosystems and applications impose challenges which are often different from those associated with bulk soil remediation. These include high or extreme low pesticide concentrations, mixed contamination, the presence of alternative carbon sources, specific hydraulic conditions, and spatial and temporal variation. Moreover, for various indicated ecosystems, limited knowledge exists about the microbiota present and their physiology and about the in situ degradation kinetics. This review reports on the current knowledge on applications of biodegradation in mitigating and remediating freshwater pesticide contamination. Attention is paid to the challenges involved and current knowledge gaps for improving those applications.


Subject(s)
Biodegradation, Environmental , Fresh Water/analysis , Groundwater/analysis , Pesticides/analysis , Water Pollutants, Chemical/analysis , Water Purification/methods , Ecosystem , Fresh Water/microbiology , Groundwater/microbiology , Pesticides/metabolism , Water Pollutants, Chemical/metabolism
3.
Biodegradation ; 25(5): 757-76, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25037978

ABSTRACT

Anaerobic reductive dechlorination of hexachlorobenzene (HCB) and three isomers of tetrachlorobenzene (TeCB) (1,2,3,4-, 1,2,3,5- and 1,2,4,5-TeCB) was investigated in microcosms containing chloroaromatic contaminated river sediment. All chlorobenzenes were dechlorinated to dichlorobenzene (DCB) or monochlorobenzene. From the sediment, a methanogenic sediment-free culture was obtained which dechlorinated HCB, pentachlorobenzene, three TeCB isomers, three trichlorobenzene (TCB) isomers (1,2,3-, 1,2,4- and 1,3,5-TCB) and 1,2-DCB. Dechlorination involved multiple pathways including the removal of doubly flanked, singly flanked and isolated chlorine substituents. 454-pyrosequencing of partial bacterial 16S rRNA genes amplified from selected chlorobenzene dechlorinating sediment-free enrichment cultures revealed the presence of a variety of bacterial species, including Dehalobacter and Dehalococcoides mccartyi, that were previously documented as organohalide respiring bacteria. A genus with apparent close relationship to Desulfitobacterium that also has been associated with organohalide respiration, composed the major fraction of the operational taxonomic units (OTUs). Another major OTU was linked with Sedimentibacter sp., a genus that was previously identified in strict co-cultures of consortia reductively dehalogenating chlorinated compounds. Our data point towards the existence of multiple interactions within highly chlorinated benzene dechlorinating communities.


Subject(s)
Chlorobenzenes/metabolism , Chloroflexi/metabolism , Sewage/microbiology , Biodegradation, Environmental , Chloroflexi/genetics , RNA, Ribosomal, 16S , Rivers/microbiology
4.
Water Res ; 47(7): 2543-54, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23490101

ABSTRACT

Microbial reductive dechlorination of trichloroethylene (TCE) in groundwater can be stimulated by adding of electron donors. However, side reactions such as Fe (III) reduction competes with this reaction. This study was set-up to relate the inhibition of microbial TCE dechlorination to the quantity and quality (mineralogy) of Fe (III) in the substrate and to calibrate a substrate extraction procedure for testing bioavailable Fe (III) in sediments. Batch experiments were set-up with identical inoculum (KB-1 culture) and liquid medium composition, and adding either 1) variable amounts of ferrihydrite or 2) 14 different Fe (III) minerals coated onto or mixed in with quartz sand (at constant total Fe) at a stoichiometric excess Fe (III) over electron donor. Increasing amounts of ferrihydrite significantly increased the time for complete TCE degradation from 8 days (control sand) to 28 days (excess Fe). Acid extractable Fe (II) increased and magnetite formed during incubation, confirming Fe (III) reduction. At constant total Fe in the sand, TCE dechlorination time varied with Fe mineralogy between 8 days (no Fe added) to >120 days (Fe-containing bentonite). In general, poorly crystalline Fe (III) minerals inhibited TCE dechlorination whereas crystalline Fe (III) minerals such as goethite or hematite had no effect. The TCE inhibition time was positively correlated to the Fe (II) determined after 122 days and to the surface area of the Fe (III) minerals. Only a fraction of total Fe (III) is reduced, likely because of solubility constraints and/or coating of Fe (III) minerals by Fe (II) minerals. Iron extraction tests based on Fe (III) reduction using NH2OH(.)HCl predict the competitive inhibition of TCE degradation in these model systems. This study shows that Fe mineralogy rather that total Fe content determines the competitive inhibition of TCE dechlorination.


Subject(s)
Bacteria/metabolism , Batch Cell Culture Techniques/methods , Halogenation , Iron/metabolism , Minerals/metabolism , Trichloroethylene/metabolism , Biodegradation, Environmental , Biological Availability , Electrons , Ferric Compounds/metabolism , Formates/metabolism , Humic Substances , Hydroxylamine/chemistry , Microscopy, Electron, Scanning , Oxidation-Reduction , Silicon Dioxide/chemistry , Spectroscopy, Mossbauer , Surface Properties
5.
FEMS Microbiol Ecol ; 81(1): 134-44, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22360283

ABSTRACT

A sulfate-reducing consortium maintained for several years in the laboratory with m-xylene as sole source of carbon and energy was characterized by terminal restriction fragment length polymorphism (T-RFLP) fingerprinting of PCR-amplified 16S rRNA genes and stable isotope probing of proteins (Protein-SIP). During growth upon m-xylene or methyl-labeled m-xylene (1,3-dimethyl-(13)C(2)-benzene), a phylotype affiliated to the family Desulfobacteriaceae became most abundant. A second dominant phylotype was affiliated to the phylum Epsilonproteobacteria. In cultures grown with methyl-labeled m-xylene, 331 proteins were identified by LC-MS/MS analysis. These proteins were either not (13)C-labeled (23%) or showed a (13)C-incorporation of 19-22 atom% (13)C (77%), the latter demonstrating that methyl groups of m-xylene were assimilated. (13)C-labeled proteins were involved in anaerobic m-xylene biodegradation, in sulfate reduction, in the Wood-Ljungdahl-pathway, and in general housekeeping functions. Thirty-eight percent of the labeled proteins were affiliated to Deltaproteobacteria. Probably due to a lack of sequence data from Epsilonproteobacteria, only 14 proteins were assigned to this phylum. Our data suggest that m-xylene is assimilated by the Desulfobacteriaceae phylotype, whereas the role of the Epsilonproteobacterium in the consortium remained unclear.


Subject(s)
Bacterial Proteins/metabolism , Deltaproteobacteria/metabolism , Epsilonproteobacteria/metabolism , Xylenes/metabolism , Anaerobiosis , Biodegradation, Environmental , Carbon Isotopes , Deltaproteobacteria/classification , Deltaproteobacteria/genetics , Epsilonproteobacteria/classification , Epsilonproteobacteria/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Tandem Mass Spectrometry
6.
FEMS Microbiol Lett ; 315(1): 6-16, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21133990

ABSTRACT

The impact of four electron acceptors on hydrocarbon-induced methanogenesis was studied. Methanogenesis from residual hydrocarbons may enhance the exploitation of oil reservoirs and may improve bioremediation. The conditions to drive the rate-limiting first hydrocarbon-oxidizing steps for the conversion of hydrocarbons into methanogenic substrates are crucial. Thus, the electron acceptors ferrihydrite, manganese dioxide, nitrate or sulfate were added to sediment microcosms acquired from two brackish water locations. Hexadecane, ethylbenzene or 1-(13)C-naphthalene were used as model hydrocarbons. Methane was released most rapidly from incubations amended with ferrihydrite and hexadecane. Ferrihydrite enhanced only hexadecane-dependent methanogenesis. The rates of methanogenesis were negatively affected by sulfate and nitrate at concentrations of more than 5 and 1 mM, respectively. Metal-reducing Geobacteraceae and potential sulfate reducers as well as Methanosarcina were present in situ and in vitro. Ferrihydrite addition triggered the growth of Methanosarcina-related methanogens. Additionally, methane was removed concomitantly by anaerobic methanotrophy. ANME-1 and -2 methyl coenzyme M reductase genes were detected, indicating anaerobic methanotrophy as an accompanying process [Correction added 16 December after online publication: 'methyl coenzyme A' changed to 'methyl coenzyme M' in this sentence]. The experiments presented here demonstrate the feasibility of enhancing methanogenic alkane degradation by ferrihydrite or sulfate addition in different geological settings.


Subject(s)
Geobacter/metabolism , Hydrocarbons, Acyclic/metabolism , Hydrocarbons, Aromatic/metabolism , Methane/metabolism , Methanosarcina/metabolism , Anaerobiosis , Belgium , Biodegradation, Environmental , Carbon Dioxide/metabolism , Ferric Compounds/metabolism , Geobacter/genetics , Geologic Sediments/chemistry , Geologic Sediments/microbiology , Iron/metabolism , Manganese Compounds/metabolism , Methanosarcina/genetics , Molecular Sequence Data , Nitrates/metabolism , Oxidation-Reduction , Oxides/metabolism , Sulfates/metabolism , Time Factors
7.
Environ Microbiol ; 12(2): 401-11, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19840104

ABSTRACT

The flow of carbon under sulfate-reducing conditions within a benzene-mineralizing enrichment culture was analysed using fully labelled [13C6]-benzene. Over 180 days of incubation, 95% of added 13C-benzene was released as 13C-carbon dioxide. DNA extracted from cultures that had degraded different amounts of unlabelled or 13C-labelled benzene was centrifuged in CsCl density gradients to identify 13C-benzene-assimilating organisms by density-resolved terminal restriction fragment length polymorphism analysis and cloning of 16S rRNA gene fragments. Two phylotypes showed significantly increased relative abundance of their terminal restriction fragments in 'heavy' fractions of 13C-benzene-incubated microcosms compared with a 12C-benzene-incubated control: a member of the Cryptanaerobacter/Pelotomaculum group within the Peptococcaceae, and a phylotype belonging to the Epsilonproteobacteria. The Cryptanaerobacter/Pelotomaculum phylotype was the most frequent sequence type. A small amount of 13C-methane was aceticlastically produced, as concluded from the linear relationship between methane production and benzene degradation and the detection of Methanosaetaceae as the only methanogens present. Other phylotypes detected but not 13C-labelled belong to several genera of sulfate-reducing bacteria, that may act as hydrogen scavengers for benzene oxidation. Our results strongly support the hypothesis that benzene is mineralized by a consortium consisting of syntrophs, hydrogenotrophic sulfate reducers and to a minor extent of aceticlastic methanogens.


Subject(s)
Bacteria/metabolism , Benzene/metabolism , Carbon Isotopes , DNA, Bacterial/metabolism , DNA, Ribosomal/metabolism , Epsilonproteobacteria/genetics , Epsilonproteobacteria/metabolism , Euryarchaeota/genetics , Euryarchaeota/metabolism , Genes, rRNA , Methane/metabolism , Peptococcaceae/classification , Peptococcaceae/genetics , Peptococcaceae/metabolism , Sequence Analysis, DNA
8.
Environ Microbiol Rep ; 1(6): 535-44, 2009 Dec.
Article in English | MEDLINE | ID: mdl-23765932

ABSTRACT

We determined stable carbon and hydrogen isotope fractionation factors for anaerobic degradation of xylene isomers by several pure and mixed cultures. All cultures initiated xylene degradation by the addition of fumarate to a methyl moiety, as is known from the literature or verified by the presence of methylbenzylsuccinates as metabolic intermediates. Additionally, the A subunit of benzylsuccinate synthase (bssA) was identified in the majority of the cultures by bssA-targeted primers. Xylene degradation was always coupled to a significant carbon and hydrogen isotope fractionation. The values of the apparent kinetic isotope effect (AKIE) for carbon and hydrogen indicate that the cleavage of a carbon-hydrogen bond is an isotope-sensitive step during fumarate addition to xylene isomers. The slopes of the linear regression for hydrogen (Δδ(2) H) versus carbon (Δδ(13) C) discrimination (Λ = Δδ(2) H/Δδ(13) C ≈ εHbulk /εCbulk ) ranged from 12 ± 4 to 29 ± 5 and were comparable to Λ values previously determined for anaerobic toluene degradation. The results suggest that combined carbon and hydrogen isotope fractionation analyses can be used to monitor anaerobic xylene degradation at contaminated sites.

9.
Environ Sci Technol ; 42(21): 7793-800, 2008 Nov 01.
Article in English | MEDLINE | ID: mdl-19031862

ABSTRACT

Toluene degradation by several pure and mixed microbial cultures was investigated bytwo-dimensional compound specific isotope analysis (2D-CSIA). For most of the cultures, the respective toluene degradation pathway and toluene attacking enzymatic step was known. The slope of the linear regression for hydrogen (delta delta(2)H) vs. carbon (delta delta(13)C) discrimination (lamda = delta delta(2)H/ delta delta(13)C approximately epsilonH(bulk)/epsilonC(bulk)) was determined in order to characterize aerobic and anaerobic toluene degradation pathways. The highest lamda value was estimated for the monohydroxylation of the methyl group by Pseudomonas putida (lamda = 53 +/- 5). The lowest value was observed for Rhodococcus opacus (lamda = 2 +/- 2) due to its insignificant hydrogen fractionation, which indicates that a ring dioxygenase was responsible for the initial attack of toluene. The fungus Cladosprium sphaerospermum containing a cytochrome P450-dependent methyl monooxygenase grouped within these extreme values (lamda = 16 +/- 6). Lamda values for organisms attacking toluene under anoxic conditions by benzylsuccinate synthase were significantly different and ranged from lamda = 4 +/- 3 (Blastochloris sulfoviridis) to 31 +/- 11 (strain TRM1). Values were in the same range for organisms using nitrate (lamda = 11-14) or sulfate (lamda = 28-31) as electron acceptor, indicating that it might be possible to distinguish toluene degradation under different electron acceptor conditions by 2D-CSIA.


Subject(s)
Chemical Fractionation/methods , Toluene/metabolism , Aerobiosis , Bacteria/enzymology , Biodegradation, Environmental , Carbon Isotopes , Carbon-Carbon Lyases/metabolism , Environment , Hydrogen , Mixed Function Oxygenases/metabolism , Models, Chemical
10.
Environ Sci Technol ; 42(12): 4356-63, 2008 Jun 15.
Article in English | MEDLINE | ID: mdl-18605555

ABSTRACT

Recently, combined carbon and hydrogen isotope fractionation investigations have emerged as a powerful tool for the characterization of reaction mechanisms relevant for the removal of organic pollutants. Here, we applied this approach in order to differentiate benzene biodegradation pathways under oxic and anoxic conditions in laboratory experiments. Carbon and hydrogen isotope fractionation of benzene was studied with four different aerobic strains using a monooxygenase or a dioxygenase for the initial benzene attack, a facultative anaerobic chlorate-reducing strain as well as a sulfate-reducing mixed culture. Carbon and hydrogen enrichment factors (epsilon(C), epsilon(H)) varied for the specific pathways and degradation conditions, respectively, so that from the individual enrichment factors only limited information could be obtained for the identification of benzene biodegradation pathways. However, using the slope derived from hydrogen vs carbon isotope discriminations or the ratio of hydrogen to carbon enrichment factors (lambda = deltaH/ deltaC approximately epsilon(H)/epsilon(C)), benzene degradation mechanisms could be distinguished. Although experimentally determined lambda values partially overlapped, ranges could be determined for different benzene biodegradation pathways. Specific lambda values were < 2 for dihydroxylation, between 7 and 9 for monohydroxylation, and > 17 for anaerobic degradation. Moreover, variations in lambda values suggest that more than one reaction mechanism exists for monohydroxylation as well as for anaerobic benzene degradation under nitrate-reducing, sulfate-reducing, or methanogenic conditions. Our results show that the combined carbon and hydrogen isotope fractionation approach has potential to elucidate biodegradation pathways of pollutants in field and laboratory microcosm studies.


Subject(s)
Benzene/metabolism , Carbon Isotopes/analysis , Hydrogen/analysis , Bacteria/metabolism
11.
FEMS Microbiol Ecol ; 63(1): 94-106, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18081593

ABSTRACT

Microcosms filled with different solids (sand, lava, Amberlite XAD-7) were exposed for 67 days in the sulfidic part of a groundwater monitoring well downstream of the source zone of a benzene-contaminated aquifer and subsequently incubated in the laboratory. Benzene was repeatedly degraded in several microcosms accompanied by production of sulfide, leading to stable benzene-degrading enrichment cultures. In control microcosms without filling material, benzene was initially degraded, but the benzene-degrading capacity could not be sustained. The results indicate that long-term physiologically active benzene-degrading microorganisms were attached to surfaces of the solids. The biodiversity and attachment behavior of microorganisms in the in situ microcosms was assessed by confocal laser scanning microscopy and single-strand conformation polymorphism (SSCP) analysis, followed by sequencing of dominant SSCP bands. The microbial community was composed of several different Bacteria, representing members of Clostridia, Bacteroidales, all subgroups of the Proteobacteria, Verrucomicrobia, Nitrospira, Chloroflexi and Chlorobi. Only a few archaeal sequences could be retrieved from the communities. The majority of phylotypes were affiliated to bacterial groups with a possible functional relationship to the bacterial sulfur cycle, thus indicating that the microbial community in the investigated aquifer zone depends mainly on inorganic sulfur compounds as electron donors or acceptors, a finding that corresponds to the geochemical data.


Subject(s)
Bacteria, Anaerobic/growth & development , Benzene/metabolism , Ecosystem , Fresh Water/microbiology , Soil Microbiology , Acrylic Resins , Anaerobiosis , Bacteria, Anaerobic/classification , Bacteria, Anaerobic/genetics , Bacteria, Anaerobic/metabolism , Bacterial Adhesion , Microscopy, Confocal , Molecular Sequence Data , Polymorphism, Single-Stranded Conformational , Polystyrenes , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Silicon Dioxide , Sulfur/metabolism , Volcanic Eruptions , Water Pollution
SELECTION OF CITATIONS
SEARCH DETAIL
...