Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Entropy (Basel) ; 23(3)2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33669029

ABSTRACT

Information is a core concept in modern economics, yet its definition and empirical specification is elusive. One reason is the intellectual grip of the Shannon paradigm which marginalizes semantic information. However, a precise concept of economic information must be based on a theory of semantics, since what counts economically is the meaning, function and use of information. This paper introduces a new principled approach to information that adopts the paradigm of biosemiotics, rooted in the philosophy of Charles S. Peirce and builds on recent developments of the thermodynamics of information. Information processing by autonomous agents, defined as autopoietic heat engines, is conceived as physiosemiosis operating according to fundamental thermodynamic principles of information processing, as elucidated in recent work by Kolchinsky and Wolpert (KW). I plug the KW approach into a basic conceptual model of physiosemiosis and present an evolutionary interpretation. This approach has far-reaching implications for economics, such as suggesting an evolutionary view of the economic agent, choice and behavior, which is informed by applications of statistical thermodynamics on the brain.

2.
Biosystems ; 103(3): 315-30, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21055440

ABSTRACT

Many problems in evolutionary theory are cast in dyadic terms, such as the polar oppositions of organism and environment. We argue that a triadic conceptual structure offers an alternative perspective under which the information generating role of evolution as a physical process can be analyzed, and propose a new diagrammatic approach. Peirce's natural philosophy was deeply influenced by his reception of both Darwin's theory and thermodynamics. Thus, we elaborate on a new synthesis which puts together his theory of signs and modern Maximum Entropy approaches to evolution in a process discourse. Following recent contributions to the naturalization of Peircean semiosis, pointing towards 'physiosemiosis' or 'pansemiosis', we show that triadic structures involve the conjunction of three different kinds of causality, efficient, formal and final. In this, we accommodate the state-centered thermodynamic framework to a process approach. We apply this on Ulanowicz's analysis of autocatalytic cycles as primordial patterns of life. This paves the way for a semiotic view of thermodynamics which is built on the idea that Peircean interpretants are systems of physical inference devices evolving under natural selection. In this view, the principles of Maximum Entropy, Maximum Power, and Maximum Entropy Production work together to drive the emergence of information carrying structures, which at the same time maximize information capacity as well as the gradients of energy flows, such that ultimately, contrary to Schrödinger's seminal contribution, the evolutionary process is seen to be a physical expression of the Second Law.


Subject(s)
Biological Evolution , Models, Biological , Thermodynamics , Entropy , Philosophy , Selection, Genetic , Symbolism
SELECTION OF CITATIONS
SEARCH DETAIL
...