Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
1.
Alzheimers Res Ther ; 16(1): 105, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730496

ABSTRACT

BACKGROUND: Alzheimer disease (AD) is a major health problem of aging, with tremendous burden on healthcare systems, patients, and families globally. Lecanemab, an FDA-approved amyloid beta (Aß)-directed antibody indicated for the treatment of early AD, binds with high affinity to soluble Aß protofibrils, which have been shown to be more toxic to neurons than monomers or insoluble fibrils. Lecanemab has been shown to be well tolerated in multiple clinical trials, although risks include an increased rate of amyloid-related imaging abnormalities (ARIA) and infusion reactions relative to placebo. METHODS: Clarity AD was an 18-month treatment (Core study), multicenter, double-blind, placebo-controlled, parallel-group study with open-label extension (OLE) in participants with early AD. Eligible participants were randomized 1:1 across 2 treatment groups (placebo and lecanemab 10 mg/kg biweekly). Safety evaluations included monitoring of vital signs, physical examinations, adverse events, clinical laboratory parameters, and 12-lead electrocardiograms. ARIA occurrence was monitored throughout the study by magnetic resonance imaging, read both locally and centrally. RESULTS: Overall, 1795 participants from Core and 1612 participants with at least one dose of lecanemab (Core + OLE) were included. Lecanemab was generally well-tolerated in Clarity AD, with no deaths related to lecanemab in the Core study. There were 9 deaths during the OLE, with 4 deemed possibly related to study treatment. Of the 24 deaths in Core + OLE, 3 were due to intracerebral hemorrhage (ICH): 1 placebo in the Core due to ICH, and 2 lecanemab in OLE with concurrent ICH (1 on tissue plasminogen activator and 1 on anticoagulant therapy). In the Core + OLE, the most common adverse events in the lecanemab group (> 10%) were infusion-related reactions (24.5%), ARIA with hemosiderin deposits (ARIA-H) microhemorrhages (16.0%), COVID-19 (14.7%), ARIA with edema (ARIA-E; 13.6%), and headache (10.3%). ARIA-E and ARIA-H were largely radiographically mild-to-moderate. ARIA-E generally occurred within 3-6 months of treatment, was more common in ApoE e4 carriers (16.8%) and most common in ApoE ε4 homozygous participants (34.5%). CONCLUSIONS: Lecanemab was generally well-tolerated, with the most common adverse events being infusion-related reactions, ARIA-H, ARIA-E. Clinicians, participants, and caregivers should understand the incidence, monitoring, and management of these events for optimal patient care. TRIAL REGISTRATION: ClinicalTrials.gov numbers: Clarity AD NCT03887455).


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/drug therapy , Male , Double-Blind Method , Female , Aged , Aged, 80 and over , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/adverse effects , Middle Aged , Amyloid beta-Peptides/metabolism , Magnetic Resonance Imaging , Treatment Outcome
2.
Mol Ther Methods Clin Dev ; 32(2): 101227, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38516691

ABSTRACT

Biotechnologies such as gene therapy have brought DNA vectors to the forefront of pharmaceuticals. The quality of starting material plays a pivotal role in determining final product quality. Here, we examined the fidelity of DNA replication using enzymatic methods (in vitro) compared to plasmid DNA produced in vivo in E. coli. Next-generation sequencing approaches rely on in vitro polymerases, which have inherent limitations in sensitivity. To address this challenge, we introduce a novel assay based on loss-of-function (LOF) mutations in the conditionally toxic sacB gene. Our findings show that DNA production in E. coli results in significantly fewer LOF mutations (80- to 3,000-fold less) compared to enzymatic DNA replication methods such as polymerase chain reaction (PCR) and rolling circle amplification (RCA). These results suggest that using DNA produced by PCR or RCA may introduce a substantial number of mutation impurities, potentially affecting the quality and yield of final pharmaceutical products. Our study underscores that DNA synthesized in vitro has a significantly higher mutation rate than DNA produced traditionally in E. coli. Therefore, utilizing in vitro enzymatically produced DNA in biotechnology and biomanufacturing may entail considerable fidelity-related risks, while using DNA starting material derived from E. coli substantially mitigates this risk.

3.
PLoS One ; 17(11): e0269649, 2022.
Article in English | MEDLINE | ID: mdl-36410013

ABSTRACT

INTRODUCTION: Drug development for neurodegenerative diseases such as Friedreich's ataxia (FRDA) is limited by a lack of validated, sensitive biomarkers of pharmacodynamic response in affected tissue and disease progression. Studies employing neuroimaging measures to track FRDA have thus far been limited by their small sample sizes and limited follow up. TRACK-FA, a longitudinal, multi-site, and multi-modal neuroimaging natural history study, aims to address these shortcomings by enabling better understanding of underlying pathology and identifying sensitive, clinical trial ready, neuroimaging biomarkers for FRDA. METHODS: 200 individuals with FRDA and 104 control participants will be recruited across seven international study sites. Inclusion criteria for participants with genetically confirmed FRDA involves, age of disease onset ≤ 25 years, Friedreich's Ataxia Rating Scale (FARS) functional staging score of ≤ 5, and a total modified FARS (mFARS) score of ≤ 65 upon enrolment. The control cohort is matched to the FRDA cohort for age, sex, handedness, and years of education. Participants will be evaluated at three study visits over two years. Each visit comprises of a harmonized multimodal Magnetic Resonance Imaging (MRI) and Spectroscopy (MRS) scan of the brain and spinal cord; clinical, cognitive, mood and speech assessments and collection of a blood sample. Primary outcome measures, informed by previous neuroimaging studies, include measures of: spinal cord and brain morphometry, spinal cord and brain microstructure (measured using diffusion MRI), brain iron accumulation (using Quantitative Susceptibility Mapping) and spinal cord biochemistry (using MRS). Secondary and exploratory outcome measures include clinical, cognitive assessments and blood biomarkers. DISCUSSION: Prioritising immediate areas of need, TRACK-FA aims to deliver a set of sensitive, clinical trial-ready neuroimaging biomarkers to accelerate drug discovery efforts and better understand disease trajectory. Once validated, these potential pharmacodynamic biomarkers can be used to measure the efficacy of new therapeutics in forestalling disease progression. CLINICAL TRIAL REGISTRATION: ClinicalTrails.gov Identifier: NCT04349514.


Subject(s)
Friedreich Ataxia , Adult , Humans , Biomarkers , Brain/pathology , Disease Progression , Friedreich Ataxia/pathology , Magnetic Resonance Spectroscopy
4.
J Pers Med ; 12(10)2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36294700

ABSTRACT

SRX246, an orally available CNS penetrant vasopressin (VP) V1a receptor antagonist, was studied in Huntington's disease (HD) patients with irritability and aggressive behavior in the exploratory phase 2 trial, Safety, Tolerability, and Activity of SRX246 in Irritable HD patients (STAIR). This was a dose-escalation study; subjects received final doses of 120 mg BID, 160 mg BID, or placebo. The compound was safe and well tolerated. In this paper, we summarize the results of exploratory analyses of measures of problematic behaviors, including the Cohen-Mansfield Agitation Inventory (CMAI), Aberrant Behavior Checklist (ABC), Problem Behaviors Assessment-short form (PBA-s), Irritability Scale (IS), Clinical Global Impression (CGI), HD Quality of Life (QoL), and Caregiver Burden questionnaires. In addition to these, we asked subjects and caregivers to record answers to short questions about mood, irritability, and aggressive conduct in an eDiary. STAIR was the first rigorously designed study of behavioral endpoints like these in HD. The exploratory analyses showed that SRX246 reduced aggressive acts. Readily observed behaviors should be used as trial endpoints.

5.
Neurol Clin Pract ; 12(2): 131-138, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35747889

ABSTRACT

Background and Objectives: Suicidality is a common concern in the routine care of persons with Huntington disease (HD) and for the many participants in HD clinical trials. In a previous analysis, we identified baseline and time-dependent factors associated with suicidal ideation and attempts from 2CARE, a large, randomized, double-blind clinical trial. Methods: The present analysis extends our prior methodology to 2 other large interventional HD clinical trials, CARE-HD and CREST-E. Results: We observed relationships across studies between suicidality events and prior suicidal ideation at baseline, antidepressant/anxiolytic use, chorea, increasing age, and several domains in the Unified Huntington Disease Rating Scale (UHDRS) Behavioral Assessment (depressed mood, low self-esteem, aggression, and active suicidality). Discussion: These data may form the basis for a subscale of demographic and UHDRS items with the potential for prospectively identifying suicidality risk in HD clinics and clinical trials. Trial Registration Information: 2CARE and CREST are registered at clinicaltrials.gov. 2CARE NCT00608881, registered February 6, 2008; first enrollment March 2008. CREST-E NCT00712426, registered July 10, 2008; first enrollment September 2009. CARE-HD, not registered; first enrollment July 1997.

6.
Mov Disord ; 37(5): 1040-1046, 2022 05.
Article in English | MEDLINE | ID: mdl-35170086

ABSTRACT

BACKGROUND: Subtle neurodegenerative motor and cognitive impairments accumulate over a prodromal period several years before clinical diagnosis of Huntington's disease (HD). The inclusion of prodromal individuals in therapeutic trials would facilitate testing of therapies early in the disease course and the development of treatments intended to prevent or delay disability. OBJECTIVES: We evaluate the normalized prognostic index (PIN) score as a tool to select participants for a perimanifest trial. We explore anticipated PIN-based inclusion rates from the preHD screening population and estimate sample-size requirements based on PIN threshold, trial duration, and outcome measure. METHODS: Individual participant data from ENROLL-HD were used to fit mixed effect linear models to assess longitudinal changes in clinical metrics for participants with early-manifest HD and PIN-stratified preHD subcohorts. RESULTS: A PIN threshold of 0.0 was met by 40% of the preHD participants in ENROLL-HD; 39.4% and 55.2% progressed to new diagnoses of early-manifest HD within 2 and 3 years, respectively. Various PIN thresholds also enabled the selection of specified ratios of prodromal preHD to early manifest HD participants for a perimanifest trial. Estimated sample sizes for a trial enrolling prodromal preHD (PIN > 0.0) and stage 1 and 2 motor-diagnosed participants varied depending on the composition of the screening pool, the length of follow-up (1, 2, or 3 years), and outcome measure. CONCLUSIONS: The composition of a perimanifest clinical trial population can be defined using preselected PIN thresholds, facilitating the assessment of potential disease-modifying therapies in HD. © 2022 Voyager Therapeutics, Inc. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.


Subject(s)
Huntington Disease , Clinical Trials as Topic , Disease Progression , Humans , Huntington Disease/diagnosis , Huntington Disease/drug therapy , Movement , Prodromal Symptoms , Prognosis
7.
Front Physiol ; 12: 663898, 2021.
Article in English | MEDLINE | ID: mdl-34366879

ABSTRACT

There is increasing evidence that impairments of cerebrovascular function and/or abnormalities of the cerebral vasculature might contribute to early neuronal cell loss in Huntington's disease (HD). Studies in both healthy individuals as well as in patients with other neurodegenerative disorders have used an exogenous carbon dioxide (CO2) challenge in conjunction with functional magnetic resonance imaging (fMRI) to assess regional cerebrovascular reactivity (CVR). In this study, we explored potential impairments of CVR in HD. Twelve gene expanded HD individuals, including both pre-symptomatic and early symptomatic HD and eleven healthy controls were administered a gas mixture targeting a 4-8 mmHg increase in CO2 relative to the end-tidal partial pressure of CO2 (P ET CO2) at rest. A Hilbert Transform analysis was used to compute the cross-correlation between the time series of regional BOLD signal changes (ΔBOLD) and increased P ET CO2, and to estimate the response delay of ΔBOLD relative to P ET CO2. After correcting for age, we found that the cross-correlation between the time series for regional ΔBOLD and for P ET CO2 was weaker in HD subjects than in controls in several subcortical white matter regions, including the corpus callosum, subcortical white matter adjacent to rostral and caudal anterior cingulate, rostral and caudal middle frontal, insular, middle temporal, and posterior cingulate areas. In addition, greater volume of dilated perivascular space (PVS) was observed to overlap, primarily along the periphery, with the areas that showed greater ΔBOLD response delay. Our preliminary findings support that alterations in cerebrovascular function occur in HD and may be an important, not as yet considered, contributor to early neuropathology in HD.

8.
mBio ; 12(4): e0111521, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34281388

ABSTRACT

Genetic editing has revolutionized biotechnology, but delivery of endonuclease genes as DNA can lead to aberrant integration or overexpression, leading to off-target effects. Here, we develop a mechanism to deliver Cre recombinase as a protein by engineering the bacterial type six secretion system (T6SS). Using multiple T6SS fusion proteins, Aeromonas dhakensis or attenuated Vibrio cholerae donor strains, and a gain-of-function cassette for detecting Cre recombination, we demonstrate successful delivery of active Cre directly into recipient cells. The most efficient transfer was achieved using a truncated version of PAAR2 from V. cholerae, resulting in a relatively small (118-amino-acid) delivery tag. We further demonstrate the versatility of this system by delivering an exogenous effector, TseC, enabling V. cholerae to kill Pseudomonas aeruginosa. This implies that P. aeruginosa is naturally resistant to all native effectors of V. cholerae and that the TseC chaperone protein is not required for its activity. Moreover, it demonstrates that the engineered system can improve T6SS efficacy against specific pathogens, proposing future application in microbiome manipulation or as a next-generation antimicrobial. Inexpensive and easy to produce, this protein delivery system has many potential applications, ranging from studying T6SS effectors to genetic editing. IMPORTANCE Delivery of protein-based drugs, antigens, and gene-editing agents has broad applications. The type VI protein secretion system (T6SS) can target both bacteria and eukaryotic cells and deliver proteins of diverse size and function. Here, we harness the T6SS to successfully deliver Cre recombinase to genetically edit bacteria without requiring the introduction of exogenous DNA into the recipient cells. This demonstrates a promising advantage over current genetic editing tools that require transformation or conjugation of DNA. The engineered secretion tag can also deliver a heterologous antimicrobial toxin that kills an otherwise unsusceptible pathogen, Pseudomonas aeruginosa. These results demonstrate the potential of T6SS-mediated delivery in areas including genome editing, killing drug-resistant pathogens, and studying toxin functions.


Subject(s)
Gene Editing/methods , Integrases/genetics , Integrases/metabolism , Type VI Secretion Systems/genetics , Type VI Secretion Systems/metabolism , Aeromonas/genetics , Anti-Bacterial Agents/metabolism , Bacterial Proteins/metabolism , Gene Transfer Techniques , Protein Transport , Pseudomonas aeruginosa/metabolism , Vibrio cholerae/genetics
9.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Article in English | MEDLINE | ID: mdl-34161288

ABSTRACT

The type 6 secretion system (T6SS) is a bacterial weapon broadly distributed in gram-negative bacteria and used to kill competitors and predators. Featuring a long and double-tubular structure, this molecular machine is energetically costly to produce and thus is likely subject to diverse regulation strategies that are largely ill defined. In this study, we report a quantity-sensing control of the T6SS that down-regulates the expression of secreted components when they accumulate in the cytosol due to T6SS inactivation. Using Vibrio cholerae strains that constitutively express an active T6SS, we demonstrate that mRNA levels of secreted components, including the inner-tube protein component Hcp, were down-regulated in T6SS structural gene mutants while expression of the main structural genes remained unchanged. Deletion of both hcp gene copies restored expression from their promoters, while Hcp overexpression negatively impacted expression. We show that Hcp directly interacts with the RpoN-dependent T6SS regulator VasH, and deleting the N-terminal regulator domain of VasH abolishes this interaction as well as the expression difference of hcp operons between T6SS-active and inactive strains. We find that negative regulation of hcp also occurs in other V. cholerae strains and the pathogens Aeromonas dhakensis and Pseudomonas aeruginosa This Hcp-dependent sensing control is likely an important energy-conserving mechanism that enables T6SS-encoding organisms to quickly adjust T6SS expression and prevent wasteful build-up of its major secreted components in the absence of their efficient export out of the bacterial cell.


Subject(s)
Bacterial Proteins/metabolism , Hemolysin Proteins/metabolism , Intracellular Space/metabolism , Type VI Secretion Systems/metabolism , Vibrio cholerae/metabolism , Bacterial Proteins/chemistry , Cytoplasm/metabolism , Down-Regulation , Feedback, Physiological , Models, Biological , Phylogeny , Protein Domains
10.
J Bacteriol ; 203(9)2021 05 01.
Article in English | MEDLINE | ID: mdl-33593945

ABSTRACT

Bacteria have evolved to sense and respond to their environment by altering gene expression and metabolism to promote growth and survival. In this work we demonstrate that Salmonella displays an extensive (>30 hour) lag in growth when subcultured into media where dicarboxylates such as succinate are the sole carbon source. This growth lag is regulated in part by RpoS, the RssB anti-adaptor IraP, translation elongation factor P, and to a lesser degree the stringent response. We also show that small amounts of proline or citrate can trigger early growth in succinate media and that, at least for proline, this effect requires the multifunctional enzyme/regulator PutA. We demonstrate that activation of RpoS results in the repression of dctA, encoding the primary dicarboxylate importer, and that constitutive expression of dctA induced growth. This dicarboxylate growth lag phenotype is far more severe across multiple Salmonella isolates than in its close relative E. coli Replacing 200 nt of the Salmonella dctA promoter region with that of E. coli was sufficient to eliminate the observed lag in growth. We hypothesized that this cis-regulatory divergence might be an adaptation to Salmonella's virulent lifestyle where levels of phagocyte-produced succinate increase in response to bacterial LPS, however we found that impairing dctA repression had no effect on Salmonella's survival in acidified succinate or in macrophages.Importance Bacteria have evolved to sense and respond to their environment to maximize their chance of survival. By studying differences in the responses of pathogenic bacteria and closely related non-pathogens, we can gain insight into what environments they encounter inside of an infected host. Here we demonstrate that Salmonella diverges from its close relative E. coli in its response to dicarboxylates such as the metabolite succinate. We show that this is regulated by stress response proteins and ultimately can be attributed to Salmonella repressing its import of dicarboxylates. Understanding this phenomenon may reveal a novel aspect of the Salmonella virulence cycle, and our characterization of its regulation yields a number of mutant strains that can be used to further study it.

11.
Neurology ; 96(6): e890-e894, 2021 02 09.
Article in English | MEDLINE | ID: mdl-33106388

ABSTRACT

OBJECTIVE: To quantify the percent volume of dilated perivascular space (PVS) in the subcortical forebrain in patients with early Huntington disease (HD) and to explore the relationship between PVS and disease severity. METHODS: MRI scans were performed on 25 patients with HD and 23 healthy age-matched controls at Massachusetts General Hospital. The imaging data were analyzed with a novel algorithm to determine regional PVS volume. A fractional logistic regression analysis was used to quantify the association between regional percent PVS volume and (1) disease designation (HD or control) and (2) disease severity as assessed by normalized caudate volume. RESULTS: Patients with HD had the greatest percent volume of dilated PVS in the putamen (left putamen: odds ratio 2.06 [95% confidence interval (CI) 1.62-2.62], HD 3.27% [95% CI 2.83-3.78] vs controls 1.62% [95% CI 1.32-1.97], p fdr < 0.001; right putamen: odds ratio 1.66 [95% CI 1.33-2.08], HD 3.43% [95% CI 2.94-4.01] vs controls 2.09% [95% CI 1.79-2.45], p fdr < 0.001) and several subcortical white matter regions compared to controls. Dilated PVS increased with disease severity. CONCLUSIONS: The objective quantification of dilated PVS suggests that PVS burden is high, is associated with disease severity, and may affect the distribution and success of treatments administered either intrathecally such as antisense oligonucleotides or by intraparenchymal administration such as cell and gene therapies. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that increased dilated PVS is associated with worse HD severity. The study is rated Class II because of the cross-sectional design.


Subject(s)
Glymphatic System/pathology , Huntington Disease/pathology , Huntington Disease/physiopathology , Putamen/pathology , White Matter/pathology , Adult , Cross-Sectional Studies , Female , Glymphatic System/diagnostic imaging , Humans , Huntington Disease/diagnostic imaging , Image Interpretation, Computer-Assisted , Magnetic Resonance Imaging , Male , Middle Aged , Putamen/diagnostic imaging , Severity of Illness Index , White Matter/diagnostic imaging
12.
J Clin Med ; 9(11)2020 Nov 16.
Article in English | MEDLINE | ID: mdl-33207828

ABSTRACT

SRX246 is a vasopressin (AVP) 1a receptor antagonist that crosses the blood-brain barrier. It reduced impulsive aggression, fear, depression and anxiety in animal models, blocked the actions of intranasal AVP on aggression/fear circuits in an experimental medicine fMRI study and demonstrated excellent safety in Phase 1 multiple-ascending dose clinical trials. The present study was a 3-arm, multicenter, randomized, placebo-controlled, double-blind, 12-week, dose escalation study of SRX246 in early symptomatic Huntington's disease (HD) patients with irritability. Our goal was to determine whether SRX246 was safe and well tolerated in these HD patients given its potential use for the treatment of problematic neuropsychiatric symptoms. Participants were randomized to receive placebo or to escalate to 120 mg twice daily or 160 mg twice daily doses of SRX246. Assessments included standard safety tests, the Unified Huntington's Disease Rating Scale (UHDRS), and exploratory measures of problem behaviors. The groups had comparable demographics, features of HD and baseline irritability. Eighty-two out of 106 subjects randomized completed the trial on their assigned dose of drug. One-sided exact-method confidence interval tests were used to reject the null hypothesis of inferior tolerability or safety for each dose group vs. placebo. Apathy and suicidality were not affected by SRX246. Most adverse events in the active arms were considered unlikely to be related to SRX246. The compound was safe and well tolerated in HD patients and can be moved forward as a candidate to treat irritability and aggression.

13.
Cell Rep ; 33(2): 108259, 2020 10 13.
Article in English | MEDLINE | ID: mdl-33053336

ABSTRACT

The bacterial type six secretion system (T6SS) delivers toxic effector proteins into neighboring cells, but bacteria must protect themselves against their own T6SS. Immunity genes are the best-characterized defenses, protecting against specific cognate effectors. However, the prevalence of the T6SS and the coexistence of species with heterologous T6SSs suggest evolutionary pressure selecting for additional defenses against it. Here we review defenses against the T6SS beyond self-associated immunity genes, such as diverse stress responses that can recognize T6SS-inflicted damage and coordinate induction of molecular armor, repair pathways, and overall survival. Some of these stress responses are required for full survival even in the presence of immunity genes. Finally, we propose that immunity gene-independent protection is, mechanistically, bacterial innate immunity and that such defenses and the T6SS have co-evolved and continue to shape one another in polymicrobial communities.


Subject(s)
Genes, Bacterial , Immunity/genetics , Type VI Secretion Systems/genetics , Bacteria/genetics , Bacteria/immunology , Reactive Oxygen Species/metabolism , Stress, Physiological
14.
Mov Disord ; 35(12): 2193-2200, 2020 12.
Article in English | MEDLINE | ID: mdl-32686867

ABSTRACT

BACKGROUND: Huntington's disease (HD) develops in individuals with extended cytosine-adenine-guanine (CAG) repeats within the huntingtin (HTT) gene, causing neurodegeneration and progressive motor and cognitive symptoms. The inclusion of mutant HTT carriers in whom overt symptoms are not yet fully manifest in therapeutic trials would enable the development of treatments that delay or halt the accumulation of significant disability. OBJECTIVES: The present analyses assess whether screening prediagnosis (preHD) individuals based on a normalized prognostic index (PIN) score would enable the selection of prodromal preHD subjects in whom longitudinal changes in established outcome measures might provide robust signals. It also compares the relative statistical effect size of longitudinal change for these measures. METHODS: Individual participant data from 2 studies were used to develop mixed effect linear models to assess longitudinal changes in clinical metrics for participants with preHD and PIN-stratified subcohorts. Relative effect sizes were calculated in 5 preHD studies and internally normalized to evaluate the strength and consistency of each metric across cohorts. RESULTS: Longitudinal modeling data demonstrate the amplification of effect sizes when preHD subcohorts were selected by PIN score thresholds of >0.0 and >0.4. These models and relative effect sizes across 5 studies consistently indicate that the Unified Huntington's Disease Rating Scale total motor score exhibits the greatest change in preHD. CONCLUSIONS: These analyses suggest that the employment of PIN scores to homogenize and stratify preHD cohorts could improve the efficiency of current outcome measures, the most robust of which is the total motor score. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Huntington Disease , Humans , Huntington Disease/diagnosis , Huntington Disease/genetics , Longitudinal Studies , Patient Selection
15.
Infect Immun ; 88(10)2020 09 18.
Article in English | MEDLINE | ID: mdl-32719152

ABSTRACT

Itaconate is a dicarboxylic acid that inhibits the isocitrate lyase enzyme of the bacterial glyoxylate shunt. Activated macrophages have been shown to produce itaconate, suggesting that these immune cells may employ this metabolite as a weapon against invading bacteria. Here, we demonstrate that in vitro, itaconate can exhibit bactericidal effects under acidic conditions similar to the pH of a macrophage phagosome. In parallel, successful pathogens, including Salmonella, have acquired a genetic operon encoding itaconate degradation proteins, which are induced heavily in macrophages. We characterized the regulation of this operon by the neighboring gene ripR in specific response to itaconate. Moreover, we developed an itaconate biosensor based on the operon promoter that can detect itaconate in a semiquantitative manner and, when combined with the ripR gene, is sufficient for itaconate-regulated expression in Escherichia coli Using this biosensor with fluorescence microscopy, we observed bacteria responding to itaconate in the phagosomes of macrophages and provide additional evidence that gamma interferon stimulates macrophage itaconate synthesis and that J774 mouse macrophages produce substantially more itaconate than the human THP-1 monocyte cell line. In summary, we examined the role of itaconate as an antibacterial metabolite in mouse and human macrophages, characterized the regulation of Salmonella's defense against it, and developed it as a convenient itaconate biosensor and inducible promoter system.


Subject(s)
Genomic Islands/genetics , Salmonella typhimurium/metabolism , Succinates/metabolism , Transcription Factors/metabolism , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Line , Gene Expression Regulation, Bacterial/drug effects , Humans , Hydrogen-Ion Concentration , Macrophages/metabolism , Macrophages/microbiology , Mice , Operon , Phagosomes/metabolism , Phagosomes/microbiology , Promoter Regions, Genetic , Salmonella typhimurium/drug effects , Salmonella typhimurium/genetics , Succinates/pharmacology , Transcription Factors/genetics
16.
Cell Rep ; 31(11): 107766, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32553162

ABSTRACT

The type VI secretion system (T6SS) is a lethal microbial weapon that injects a large needle-like structure carrying toxic effectors into recipient cells through physical penetration. How recipients respond to physical force and effectors remains elusive. Here, we use a series of effector mutants of Vibrio cholerae to determine how T6SS elicits response in Pseudomonas aeruginosa and Escherichia coli. We show that TseL, but no other effectors or physical puncture, triggers the tit-for-tat response of P. aeruginosa H1-T6SS. Although E. coli is sensitive to all periplasmically expressed effectors, P. aeruginosa is most sensitive to TseL alone. We identify a number of stress response pathways that confer protection against TseL. Physical puncture of T6SS has a moderate inhibitory effect only on envelope-impaired tolB and rseA mutants. Our data reveal that recipient cells primarily respond to effector toxicity but not to physical contact, and they rely on the stress response for immunity-independent protection.


Subject(s)
Bacterial Proteins/metabolism , Escherichia coli/metabolism , Type VI Secretion Systems/metabolism , Vibrio cholerae/metabolism , Immunity/immunology , Pseudomonas aeruginosa/metabolism
17.
Nat Microbiol ; 5(5): 706-714, 2020 05.
Article in English | MEDLINE | ID: mdl-32094588

ABSTRACT

The arms race among microorganisms is a key driver in the evolution of not only the weapons but also defence mechanisms. Many Gram-negative bacteria use the type six secretion system (T6SS) to deliver toxic effectors directly into neighbouring cells. Defence against effectors requires cognate immunity proteins. However, here we show immunity-independent protection mediated by envelope stress responses in Escherichia coli and Vibrio cholerae against a V. cholerae T6SS effector, TseH. We demonstrate that TseH is a PAAR-dependent species-specific effector highly potent against Aeromonas species but not against its V. cholerae immunity mutant or E. coli. A structural analysis reveals TseH is probably a NlpC/P60-family cysteine endopeptidase. We determine that two envelope stress-response pathways, Rcs and BaeSR, protect E. coli from TseH toxicity by mechanisms including capsule synthesis. The two-component system WigKR (VxrAB) is critical for protecting V. cholerae from its own T6SS despite expressing immunity genes. WigR also regulates T6SS expression, suggesting a dual role in attack and defence. This deepens our understanding of how bacteria survive T6SS attacks and suggests that defence against the T6SS represents a major selective pressure driving the evolution of species-specific effectors and protective mechanisms mediated by envelope stress responses and capsule synthesis.


Subject(s)
Immunity , Type VI Secretion Systems/immunology , Type VI Secretion Systems/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , Immunity/genetics , Models, Molecular , Protein Conformation , Type VI Secretion Systems/chemistry , Type VI Secretion Systems/genetics , Vibrio cholerae/genetics , Vibrio cholerae/metabolism , Virulence/genetics
18.
J Bacteriol ; 202(1)2019 12 06.
Article in English | MEDLINE | ID: mdl-31636107

ABSTRACT

Antimicrobial treatment can induce many bacterial pathogens to enter a cell wall-deficient state that contributes to persistent infections. The effect of this physiological state on the assembly of transenvelope-anchored organelles is not well understood. The type VI secretion system (T6SS) is a widespread molecular weapon for interspecies interactions and virulence, comprising a long double tubular structure and a transenvelope/baseplate complex. Here, we report that cell wall-deficient spheroplasts assembled highly flexible and elastic T6SS structures forming U, O, or S shapes. Upon contacting the inner membrane, the T6SS tubes did not contract but rather continued to grow along the membrane. Such deformation likely results from continual addition of sheath/tube subunits at the distal end. Induction of TagA repressed curved sheath formation. Curved sheaths could also contract and deliver T6SS substrates and were readily disassembled by the ClpV ATPase after contraction. Our data highlight the dramatic effect of cell wall deficiency on the shape of the T6SS structures and reveal the elastic nature of this double tubular contractile injection nanomachine.IMPORTANCE The cell wall is a physical scaffold that all transenvelope complexes have to cross for assembly. However, the cell wall-deficient state has been described as a common condition found in both Gram-negative and Gram-positive pathogens during persistent infections. Loss of cell wall is known to have pleiotropic physiological effects, but how membrane-anchored large cellular organelles adapt to this unique state is less completely understood. Our study examined the assembly of the T6SS in cell wall-deficient spheroplast cells. We report the elastic nature of contractile T6SS tubules under such conditions, providing key insights for understanding how large intracellular structures such as the T6SS accommodate the multifaceted changes in cell wall-deficient cells.


Subject(s)
Type VI Secretion Systems/physiology , Bacterial Proteins/physiology , Cell Wall/chemistry , Cell Wall/physiology , Elasticity , Lipoproteins/physiology , Spheroplasts/physiology , Type VI Secretion Systems/chemistry
19.
J Huntingtons Dis ; 8(4): 435-441, 2019.
Article in English | MEDLINE | ID: mdl-31381523

ABSTRACT

BACKGROUND: There is limited understanding of the feasibility of conducting long-term research among undiagnosed (pre-symptomatic) adults at risk to develop Huntington disease (HD), while protecting their emotional well-being and safety. OBJECTIVE: To assess pre-specified events pertaining to emotional well-being, safety, and feasibility among healthy consenting adults at risk for developing HD who have chosen not to undergo genetic testing. METHODS: PHAROS research participants prospectively reported the occurrence of events pertaining to psychological distress (psychiatric evaluations, depression, suicidality) and feasibility (maintaining confidentiality, study attrition). PHAROS enrolled 1001 participants. RESULTS: Events pertaining to psychological distress were reported by 35% of participants. The most common events included heightened suicide risk (26%), new onset depression (12%), and new mental health evaluation (9%); all occurred significantly more frequently among participants with expanded trinucleotide CAG repeats (≥37). Five deaths occurred, none related to suicide. Forty-one percent of participants reported self-disclosure of their HD at-risk status, and 15% reported that someone else (usually a family member) had done so. Confidentiality of CAG test results was maintained by investigators. The withdrawal rate was largely uniform over the study period and did not differ significantly by gender or CAG status. CONCLUSIONS: The potentially vulnerable research participants in PHAROS showed good emotional tolerability and safety. Individual CAG data were not disclosed, and confidentiality about disclosure of at-risk HD status was well maintained by others (family, friends, etc.). Long-term research participation of adults at risk for HD who choose not to undergo pre-symptomatic DNA testing is well tolerated, safe and feasible.


Subject(s)
Depression/psychology , Huntington Disease , Mental Disorders/psychology , Personal Satisfaction , Stress, Psychological/psychology , Suicide/psychology , Adult , Confidentiality , Feasibility Studies , Female , Genetic Testing , Humans , Huntington Disease/diagnosis , Huntington Disease/genetics , Huntington Disease/psychology , Male , Middle Aged , Observational Studies as Topic , Patient Selection , Prospective Studies , Risk , Self Disclosure
20.
Future Sci OA ; 5(6): FSO398, 2019 Jun 28.
Article in English | MEDLINE | ID: mdl-31285843

ABSTRACT

The 2018 FARA Biomarker Meeting highlighted the current state of development of biomarkers for Friedreich's ataxia. A mass spectroscopy assay to sensitively measure mature frataxin (reduction of which is the root cause of disease) is being developed. Biomarkers to monitor neurological disease progression include imaging, electrophysiological measures and measures of nerve function, which may be measured either in serum and/or through imaging-based technologies. Potential pharmacodynamic biomarkers include metabolic and protein biomarkers and markers of nerve damage. Cardiac imaging and serum biomarkers may reflect cardiac disease progression. Considerable progress has been made in the development of biomarkers for various contexts of use, but further work is needed in terms of larger longitudinal multisite studies, and identification of novel biomarkers for additional use cases.

SELECTION OF CITATIONS
SEARCH DETAIL
...