Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Biol (Stuttg) ; 24(6): 1031-1042, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35727918

ABSTRACT

Plants require water and nutrients for survival, although the effects of their availabilities on plant fitness differ amongst species. Genome size variation, within and across species, is suspected to influence plant water and nutrient requirements, but little is known about how variations in these resources concurrently affect plant fitness based on genome size. We examined how genome size variation between autopolyploid cytotypes influences plant morphological and physiological traits, and whether cytotype-specific trait responses differ based on water and/or nutrient availability. Diploid and autotetraploid Solidago gigantea (Giant Goldenrod) were grown in a greenhouse under four soil water:N+P treatments (L:L, L:H, H:L, H:H), and stomata characteristics (size, density), growth (above- and belowground biomass, R/S), and physiological (Anet , E, WUE) responses were measured. Resource availabilities and cytotype identity influenced some plant responses but their effects were independent of each other. Plants grown in high-water and nutrient treatments were larger, plants grown in low-water or high-nutrient treatments had higher WUE but lower E, and Anet and E rates decreased as plants aged. Autotetraploids also had larger and fewer stomata, higher biomass and larger Anet than diploids. Nutrient and water availability could influence intra- and interspecific competitive outcomes. Although S. gigantea cytotypes were not differentially affected by resource treatments, genome size may influence cytogeographic range patterning and population establishment likelihood. For instance, the larger size of autotetraploid S. gigantea might render them more competitive for resources and niche space than diploids.


Subject(s)
Asteraceae , Solidago , Diploidy , Nutrients , Polyploidy , Soil , Solidago/genetics , Tetraploidy , Water
2.
J Evol Biol ; 25(8): 1576-86, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22587337

ABSTRACT

Theory predicts that sexual reproduction provides evolutionary advantages over asexual reproduction by reducing mutational load and increasing adaptive potential. Here, we test the latter prediction in the context of plant defences against pathogens because pathogens frequently reduce plant fitness and drive the evolution of plant defences. Specifically, we ask whether sexual evening primrose plant lineages (Onagraceae) have faster rates of adaptive molecular evolution and altered gene expression of a class I chitinase, a gene implicated in defence against pathogens, than functionally asexual evening primrose lineages. We found that the ratio of amino acid to silent substitutions (K(a) /K(s) = 0.19 vs. 0.11 for sexual and asexual lineages, respectively), the number of sites identified to be under positive selection (four vs. zero for sexual and asexual lineages, respectively) and the expression of chitinase were all higher in sexual than in asexual lineages. Our results are congruent with the conclusion that a loss of sexual recombination and segregation in the Onagraceae negatively affects adaptive structural and potentially regulatory evolution of a plant defence protein.


Subject(s)
Evolution, Molecular , Oenothera biennis/genetics , Adaptation, Physiological/genetics , Amino Acid Substitution , Chitinases/genetics , Gene Expression Regulation, Plant , Oenothera biennis/classification , Oenothera biennis/enzymology , Reproduction/genetics , Reproduction, Asexual/genetics , Selection, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...