Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Contracept X ; 4: 100072, 2022.
Article in English | MEDLINE | ID: mdl-35243326

ABSTRACT

Developing new long-acting products of well-characterized contraceptive drugs is one way to address some of the reasons for unmet need for modern methods of family planning among women in low- and middle-income countries. Development and approval of such products traditionally follow a conventional paradigm that includes large Phase 3 clinical trials to evaluate efficacy (pregnancy prevention) and safety of the investigational product. Exposure-bracketing is a concept that applies known pharmacokinetics and pharmacodynamics of a drug substance to inform its safe and efficacious use in humans. Several therapeutic areas have applied this concept by leveraging established drug concentration-response relationships for approved products to expedite development and shorten the timeline for the approval of an investigational product containing the same drug substance. Based on discussions at a workshop hosted by the Bill & Melinda Gates Foundation in December 2020, it appears feasible to apply exposure-bracketing to develop novel contraceptive products using well-characterized drugs.

2.
Pharmaceutics ; 11(10)2019 Oct 08.
Article in English | MEDLINE | ID: mdl-31597277

ABSTRACT

Despite advances in regulations and initiatives to increase pediatric medicine development, there is still an unmet need for age-appropriate medicines for children. The availability of pediatric formulations is particularly lacking in resource poor areas, due to, for example, area-specific disease burden and financial constraints, as well as disconnected supply chains and fragmented healthcare systems. The paucity of authorized pediatric medicines often results in the manipulation and administration of products intended for adults, with an increased risk of mis-dosing and adverse reactions. This article provides an overview of the some of the key difficulties associated with the development of pediatric medicines in both high and low resource areas, and highlights shared and location specific challenges and opportunities. The utilization of dispersible oral dosage forms and suppositories for low and middle-income countries (LMICs) are described in addition to other platform technologies that may in the future offer opportunities for future pediatric medicine development for low resource settings.

3.
Clin Pharmacol Ther ; 105(6): 1378-1385, 2019 06.
Article in English | MEDLINE | ID: mdl-30771252

ABSTRACT

Despite recent advances in recognizing and reducing the risk of drug-drug interactions (DDIs) in developed countries, there are still significant challenges in managing DDIs in low-income countries (LICs) worldwide. In the treatment of major infectious diseases in these regions, multiple factors contribute to ineffective management of DDIs that lead to loss of efficacy or increased risk of adverse events to patients. Some of these difficulties, however, can be overcome. This review aims to evaluate the inherent complexities of DDI management in LICs from pharmacological standpoints and illustrate the unique barriers to effective management of DDIs, such as the challenges of co-infection and treatment settings. A better understanding of comprehensive drug-related properties, population-specific attributes, such as physiological changes associated with infectious diseases, and the use of modeling and simulation techniques are discussed, as they can facilitate the implementation of optimal treatments for infectious diseases at the individual patient level.


Subject(s)
Anti-Infective Agents/therapeutic use , Communicable Diseases/drug therapy , Communicable Diseases/economics , Drug Interactions/physiology , Poverty/economics , Anti-Infective Agents/economics , Anti-Infective Agents/metabolism , Antitubercular Agents/economics , Antitubercular Agents/metabolism , Antitubercular Agents/therapeutic use , Communicable Diseases/metabolism , Humans , Poverty/trends , Treatment Outcome , Tuberculosis/drug therapy , Tuberculosis/economics , Tuberculosis/metabolism
5.
J Pharm Sci ; 104(2): 686-97, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25219372

ABSTRACT

Sorbitol crystallization-induced aggregation of mAbs in the frozen state was evaluated. The effect of protein aggregation resulting from sorbitol crystallization was measured as a function of formulation variables such as protein concentration and pH. Long-term studies were performed on both IgG1 and IgG2 mAbs over the protein concentration range of 0.1-120 mg/mL. Protein aggregation was measured by size-exclusion HPLC (SE-HPLC) and further characterized by capillary-electrophoresis SDS. Sorbitol crystallization was monitored and characterized by subambient differential scanning calorimetry and X-ray diffraction. Aggregation due to sorbitol crystallization is inversely proportional to both protein concentration and formulation pH. At high protein concentrations, sorbitol crystallization was suppressed, and minimal aggregation by SE-HPLC resulted, presumably because of self-stabilization of the mAbs. The glass transition temperature (Tg ') and fragility index measurements were made to assess the influence of molecular mobility on the crystallization of sorbitol. Tg ' increased with increasing protein concentration for both mAbs. The fragility index decreased with increasing protein concentration, suggesting that it is increasingly difficult for sorbitol to crystallize at high protein concentrations.


Subject(s)
Antibodies, Monoclonal/chemistry , Freezing , Sorbitol/chemistry , Animals , Antibodies, Monoclonal/metabolism , Calorimetry/methods , Chemistry, Pharmaceutical , Crystallization , Immunoglobulin G/chemistry , Immunoglobulin G/metabolism , Protein Aggregates/physiology , Sorbitol/metabolism
6.
J Pharm Sci ; 97(8): 3051-66, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18023013

ABSTRACT

Monoclonal antibodies (mAbs) often require the development of high-concentration formulations. In such cases, and when it is desirable to formulate a mAb around pH 5.0, we explored a novel approach of controlling the formulation pH by harnessing the ability of mAbs to "self-buffer." Buffer capacities of four representative IgG(2) molecules (designated mAb1 through mAb4) were measured in the pH 4-6 range. The buffer capacity results indicated that the mAbs possessed a significant amount of buffer capacity, which increased linearly with concentration. By 60-80 mg/mL, the mAb buffer capacities surpassed that of 10 mM acetate, which is commonly employed in formulations for buffering in the pH 4-6 range. Accelerated high temperature stability studies (50 degrees C over 3 weeks) conducted with a representative antibody in a self-buffered formulation (50 mg/mL mAb1 in 5.25% sorbitol, pH 5.0) and with solutions formulated using conventional buffers (50 mg/mL mAb1 in 5.25% sorbitol, 25 or 50 mM acetate, glutamate or succinate, also at pH 5.0) indicated that mAb1 was most resistant to the formation of soluble aggregates in the self-buffered formulation. Increased soluble aggregate levels were observed in all the conventionally buffered (acetate, glutamate, and succinate) formulations, which further increased with increasing buffer strength. The long-term stability of the self-buffered liquid mAb1 formulation (60 mg/mL in 5% sorbitol, 0.01% polysorbate 20, pH 5.2) was comparable to the conventionally buffered (60 mg/mL in 10 mM acetate or glutamate, 5.25% sorbitol, 0.01% polysorbate 20, pH 5.2) formulations. No significant change in pH was observed after 12 months of storage at 37 and 4 degrees C for the self-buffered formulation. The 60 mg/mL self-buffered formulation of mAb1 was also observed to be stable to freeze-thaw cycling (five cycles, -20 degrees C --> room temperature). Self-buffered formulations may be a better alternative for the development of high-concentration antibody and protein dosage forms.


Subject(s)
Antibodies, Monoclonal , Buffers , Chemistry, Pharmaceutical , Antibodies, Monoclonal/chemistry , Chromatography, Gel , Chromatography, High Pressure Liquid , Hot Temperature , Hydrogen-Ion Concentration
SELECTION OF CITATIONS
SEARCH DETAIL
...