Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 10(6): 5693-5699, 2018 Feb 14.
Article in English | MEDLINE | ID: mdl-29400949

ABSTRACT

Degradation in organic light-emitting devices (OLEDs) is generally driven by reactions involving excitons and polarons. Accordingly, a common design strategy to improve OLED lifetime is to reduce the density of these species by engineering an emissive layer architecture to achieve a broad exciton recombination zone. Here, the effect of exciton density on device degradation is analyzed in a mixed host emissive layer (M-EML) architecture which exhibits a broad recombination zone. To gain further insight into the dominant degradation mechanism, losses in the exciton formation efficiency and photoluminescence (PL) efficiency are decoupled by tracking the emissive layer PL during device degradation. By varying the starting luminance and M-EML thickness, the rate of PL degradation is found to depend strongly on recombination zone width and hence exciton density. In contrast, losses in the exciton formation depend only weakly on the recombination zone, and thus may originate outside of the emissive layer. These results suggest that the lifetime enhancement observed in the M-EML architectures reflects a reduction in the rate of PL degradation. Moreover, the varying roles of excitons and polarons in degrading the PL and exciton formation efficiencies suggest that kinetically distinct pathways drive OLED degradation and that a single degradation mechanism cannot be assumed when attempting to model the device lifetime. This work highlights the potential to extract fundamental insight into OLED degradation by tracking the emissive layer PL during lifetime testing, while also enabling diagnostic tests on the root causes of device instability.

2.
J Am Chem Soc ; 138(39): 12739-12742, 2016 10 05.
Article in English | MEDLINE | ID: mdl-27626808

ABSTRACT

We describe here three alkynyl substituted naphthalenes that display promising luminescence characteristics. Each compound is easily and efficiently synthesized in three steps by capitalizing on the hexadehydro-Diels-Alder (HDDA) cycloisomerization reaction in which an intermediate benzyne is captured by tetraphenylcyclopentadienone, a classical trap for benzyne itself. These compounds luminesce in the deep blue when stimulated either optically (i.e., photoluminescence in both solution and solid films) or electrically [in a light-emitting diode (LED)]. The photophysical properties are relatively insensitive to the electronic nature of the substituents (H, OMe, CO2Me) that define these otherwise identical compounds. Overall, our observations suggest that the twisted nature of the five adjacent aryl groups serves to minimize the intermolecular interaction between core naphthalene units in different sample morphologies. These compounds represent promising leads for the identification of others of value as the emissive component of organic LEDs (OLEDs).


Subject(s)
Alkynes/chemistry , Naphthalenes/chemistry , Benzene/chemistry , Color , Cyclohexenes/chemistry , Isomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...