Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Laser Photon Rev ; 17(12)2023 Dec.
Article in English | MEDLINE | ID: mdl-38883699

ABSTRACT

Label-free super-resolution (LFSR) imaging relies on light-scattering processes in nanoscale objects without a need for fluorescent (FL) staining required in super-resolved FL microscopy. The objectives of this Roadmap are to present a comprehensive vision of the developments, the state-of-the-art in this field, and to discuss the resolution boundaries and hurdles which need to be overcome to break the classical diffraction limit of the LFSR imaging. The scope of this Roadmap spans from the advanced interference detection techniques, where the diffraction-limited lateral resolution is combined with unsurpassed axial and temporal resolution, to techniques with true lateral super-resolution capability which are based on understanding resolution as an information science problem, on using novel structured illumination, near-field scanning, and nonlinear optics approaches, and on designing superlenses based on nanoplasmonics, metamaterials, transformation optics, and microsphere-assisted approaches. To this end, this Roadmap brings under the same umbrella researchers from the physics and biomedical optics communities in which such studies have often been developing separately. The ultimate intent of this paper is to create a vision for the current and future developments of LFSR imaging based on its physical mechanisms and to create a great opening for the series of articles in this field.

2.
Nano Lett ; 22(15): 6179-6185, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35866701

ABSTRACT

Measuring the change in reflectivity (ΔR) using the traditional pump-probe approach can monitor photoinduced ultrafast dynamics in matter, yet relating these dynamic to physical processes for complex systems is not unique. By applying a simple modification to the classical pump-probe technique, we simultaneously measure both the first and second order of ΔR. These additional data impose new constraints on the interpretation of the underlying ultrafast dynamics. In the first application of the approach, we probe the dynamics induced by a pump laser on the local-surface plasmon resonance (LSPR) in gold nanoantennas. Measurements of ΔR over several picoseconds and a wide range of probe wavelengths around the LSPR peak are followed by data fitting using the two-temperature model. The constraints, imposed by the second-order data, lead us to modify the model and force us to include the contribution of nonthermalized electrons in the early stages of the dynamics.


Subject(s)
Nanostructures , Electrons , Gold/chemistry , Lasers , Nanostructures/chemistry , Surface Plasmon Resonance/methods
3.
Opt Lett ; 44(21): 5190-5193, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31674964

ABSTRACT

Terahertz field-induced second-harmonic generation (TFISH) is a technique for optical detection of broadband THz fields. We show that by placing an iris at the interaction volume of the THz and optical fields, the TFISH signal increases by several tenfold in atmospheric air. The iris-assisted TFISH amplification is characterized at varying air pressures and probe intensities and provides an elegant platform for studying nonlinear phase matching in the gas phase.

SELECTION OF CITATIONS
SEARCH DETAIL
...