Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 118(16): 2915-21, 2014 Apr 24.
Article in English | MEDLINE | ID: mdl-24684470

ABSTRACT

Recently 1-(phenylethynyl)naphthalene (1-PEN) was suggested to be the primary dimerization product of phenylpropargyl radicals and therefore an important polycyclic hydrocarbon in combustion processes. Here we describe a spectroscopic investigation of a genuine 1-PEN sample by several complementary techniques, infrared spectroscopy, multiphoton ionization (MPI), and threshold photoelectron spectroscopy. The infrared spectrum recorded in a gas cell confirms that 1-PEN is indeed the previously observed dimerization product of phenylpropargyl. The origin of the transition into the electronically excited S1 state lies at 30823 cm(-1), as found by MPI. Considerable vibrational activity is observed, and a number of low-wavenumber bands are assigned to a progression in the torsional motion. Values of 6 cm(-1) (S0) and 17 cm(-1) (S1) were derived for the fundamental of the torsion. In the investigated energy range the excited state lifetimes are in the nanosecond range. Spectra of the 1-PEN/Ar cluster exhibit a red shift of the electronic origin of 22 cm(-1), in good agreement with other aromatic molecules. A threshold photoelectron spectrum recorded using synchrotron radiation yields an ionization energy of 7.58 eV for 1-PEN. An excited electronic state of the cation is found at 7.76 eV, and dissociative photoionization does not set in below 15 eV.

2.
J Phys Chem A ; 118(8): 1397-402, 2014 Feb 27.
Article in English | MEDLINE | ID: mdl-24494977

ABSTRACT

We report a combined gas phase and solution phase study of 9-fluorenone. The structure and dynamics of isolated fluorenone in the S3-state were studied by resonant enhanced multiphoton ionization with picosecond pulses in a free jet of molecules excited between 285 and 312 nm. Ionization was performed with a second ps-pulse at 351 nm. The electronic spectrum is structured, and the origin of the C (1)B2 ← X (1)A1 transition was observed at 32,122 cm(-1). Several vibrational fundamentals appear in the spectrum. In the gas phase we observe a biexponential decay, which suggests an internal conversion to the coupled S1/S2-state within 10-40 ps. A further decay that is assigned to intersystem crossing was found to be longer than 500 ps. In addition to the gas phase measurements, we studied the photophysics of 9-fluorenone in cyclohexane by femtosecond-time-resolved transient absorption spectroscopy and observed very similar dynamics upon excitation to the S3 state: It deactivates within 8-11 ps by internal conversion, followed by intersystem crossing within 120-150 ps, forming a long-lived triplet state. Experiments in acetonitrile, however, showed marked differences. Intersystem crossing is ineffective in polar solvents because the lowest excited singlest state is of ππ* character and does not interact with the (3)ππ*.

3.
Chemphyschem ; 14(17): 3906-8, 2013 Dec 02.
Article in English | MEDLINE | ID: mdl-24288284

ABSTRACT

Radically exciting! The excited-state dynamics of the 2-methylallyl radical are studied by time-resolved photoionization. The radical, which is relevant for combustion processes, is generated by pyrolysis from the corresponding bromide. The lifetime of the electronically excited B state was measured to be 14 ps and shorter.

4.
Phys Chem Chem Phys ; 15(21): 8151-61, 2013 Jun 07.
Article in English | MEDLINE | ID: mdl-23598438

ABSTRACT

We report a synthetic, spectroscopic and computational study of the polycyclic aromatic molecule pyracene, which contains aliphatic five-membered rings annealed to a naphthalene chromophore. An improved route to synthesize the compound is described. Gas-phase IR and solid-state Raman spectra agree with a ground-state D2h structure. The electronically excited S1 A(1)B3u state has been studied by resonance-enhanced multiphoton ionisation. An adiabatic excitation energy T0 = 30,798 cm(-1) (3.818 eV) was determined. SCS-ADC(2) calculations found a D2h minimum energy structure of the S1 state and yielded an excitation energy of +3.98 eV, including correction for zero point vibrational energy. The spectrum shows a rich low-frequency vibrational structure that can be assigned to the overtones of out-of-plane deformation modes of the five-membered rings by comparison with computations. The appearance of these modes as well as the frequency reduction in the excited state indicate that the potential in the S1 state is very flat. At higher excess energies most bands can be assigned to fundamentals, overtones and combination bands of either totally symmetric ag modes or of b2g modes that appear due to vibronic coupling. Lifetimes between 43 ns and 76 ns were measured for a number of vibronic bands. For the S2 state an equilibrium geometry with a non-planar carbon framework was computed. In addition a signal from the pyracene dimer was present. The spectrum shows several broad and structureless transitions. The origin band has a maximum at around 329 nm (30,400 cm(-1)). Again lifetimes between 60 ns and 70 ns were found. The dimer ion signal rises within less than 10 ps. Computations show that a crossed geometry with the long axis of one unit aligned with the short axis of the second constitutes the most stable structure. The broadening of the bands is most likely caused by excimer formation.

5.
J Phys Chem A ; 116(33): 8515-22, 2012 Aug 23.
Article in English | MEDLINE | ID: mdl-22830569

ABSTRACT

Two C(9)H(7) isomers, 1-phenylpropargyl and 3-phenylpropargyl, have been studied by IR/UV double resonance spectroscopy in a free jet. The species are possible intermediates in the formation of soot and polycyclic aromatic hydrocarbons (PAH). The radicals are generated by flash pyrolysis from the corresponding bromides and ionized at 255-297 nm in a one-color, two-photon process. Mid-infrared radiation between 500 and 1800 cm(-1) is provided by a free electron laser (FEL). It is shown that the two radicals can be distinguished by their infrared spectra. In addition, we studied the dimerization products originating from the phenylpropargyl self-reaction. We utilize the fact that the pyrolysis tube can be considered to be a flow reactor permitting us to investigate the chemistry in such a thermal reactor. Dimerization of phenylpropargyl produces predominately species with m/z = 228 and 230. A surprisingly high selectivity has been found: The species with m/z = 230 is identified to be para-terphenyl, whereas m/z = 228 can be assigned to 1-phenylethynyl-naphthalene. The results allow to derive a mechanism for the dimerization of phenylpropargyl and suggest hitherto unexplored pathways to the formation of soot and PAH.


Subject(s)
Alkynes/chemistry , Polycyclic Aromatic Hydrocarbons/chemistry , Dimerization , Free Radicals/chemistry , Molecular Structure , Polycyclic Aromatic Hydrocarbons/chemical synthesis , Spectrophotometry, Infrared , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL
...