Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol ; 166(4): 2444-50, 2001 Feb 15.
Article in English | MEDLINE | ID: mdl-11160304

ABSTRACT

The ability of dendritic cells (DC) to initiate immune responses in naive T cells is dependent upon a maturation process that allows the cells to develop their potent Ag-presenting capacity. Although immature DC can be derived in vitro by treatment of peripheral blood monocytes with GM-CSF and IL-4, additional signals such as those provided by TNF-alpha, CD40 ligand, or LPS are required for complete maturation and maximum APC function. Because we recently found that microbial lipoproteins can activate monocytes and DC through Toll-like receptor (TLR) 2, we also investigated whether lipoproteins can drive DC maturation. Immature DC were cultured with or without lipoproteins and were monitored for expression of cell surface markers indicative of maturation. Stimulation with lipopeptides increased expression of CD83, MHC class II, CD80, CD86, CD54, and CD58, and decreased CD32 expression and endocytic activity; these lipopeptide-matured DC also displayed enhanced T cell stimulatory capacity in MLR, as measured by T cell proliferation and IFN-gamma secretion. The lipid moiety of the lipopeptide was found to be essential for induction of maturation. Preincubation of maturing DC with an anti-TLR2 blocking Ab before addition of lipopeptide blocked the phenotypic and functional changes associated with DC maturation. These results demonstrate that lipopeptides can stimulate DC maturation via TLR2, providing a mechanism by which products of bacteria can participate in the initiation of an immune response.


Subject(s)
Bacterial Outer Membrane Proteins/pharmacology , Dendritic Cells/cytology , Dendritic Cells/microbiology , Drosophila Proteins , Lipoproteins/pharmacology , Membrane Glycoproteins/physiology , Peptides/pharmacology , Receptors, Cell Surface/physiology , Bacterial Outer Membrane Proteins/chemical synthesis , Bacterial Outer Membrane Proteins/physiology , Cell Differentiation/drug effects , Cell Differentiation/immunology , Cells, Cultured , Dendritic Cells/immunology , Dendritic Cells/metabolism , Humans , Immunophenotyping , Lipids/physiology , Lipoproteins/chemical synthesis , Lipoproteins/physiology , Lymphocyte Culture Test, Mixed , Mycobacterium tuberculosis/immunology , Peptides/chemical synthesis , Peptides/physiology , Salmonella typhi/immunology , Toll-Like Receptor 2 , Toll-Like Receptors , Treponema pallidum/immunology
2.
Cell Immunol ; 192(1): 24-32, 1999 Feb 25.
Article in English | MEDLINE | ID: mdl-10066343

ABSTRACT

Resistance to African trypanosomes is dependent on B cell and Th1 cell responses to the variant surface glycoprotein (VSG). While B cell responses to VSG control levels of parasitemia, the cytokine responses of Th1 cells to VSG appear to be linked to the control of parasites in extravascular tissues. We have recently shown that IFN-gamma knockout (IFN-gamma KO) mice are highly susceptible to infection and have reduced levels of macrophage activation compared to the wild-type C57BL/6 (WT) parent strain, even though parasitemias were controlled by VSG-specific antibody responses in both strains. In the present work, we examine the role of IFN-gamma in the induction of nitric oxide (NO) production and host resistance and in the development of suppressor macrophage activity in mice infected with Trypanosoma brucei rhodesiense. In contrast to WT mice, susceptible IFN-gamma KO mice did not produce NO during infection and did not develop suppressor macrophage activity, suggesting that NO might be linked to resistance but that suppressor cell activity was not associated with resistance or susceptibility to trypanosome infection. To further examine the consequence of inducible NO production in infection, we monitored survival, parasitemia, and Th cell cytokine production in iNOS KO mice. While survival times and parasitemia of iNOS KO mice did not differ significantly from WT mice, VSG-specific Th1 cells from iNOS KO mice produced higher levels of IFN-gamma and IL-2 than cells from WT mice. Together, these results show for the first time that inducible NO production is not the central defect associated with susceptibility of IFN-gamma KO mice to African trypanosomes, that IFNgamma-induced factors other than iNOS may be important for resistance to the trypanosomes, and that suppressor macrophage activity is not linked to either the resistance or the susceptibility phenotypes.


Subject(s)
Interferon-gamma/immunology , Nitric Oxide/metabolism , Trypanosoma brucei rhodesiense/immunology , Trypanosomiasis, African/immunology , Animals , Cell Division , Cells, Cultured , Disease Models, Animal , Female , Immunity, Innate/immunology , Interferon-gamma/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide Synthase/genetics , Nitric Oxide Synthase/physiology , Nitric Oxide Synthase Type II , Parasitemia/immunology , Trypanosoma brucei rhodesiense/growth & development , Trypanosomiasis, African/parasitology
3.
J Immunol ; 161(12): 6775-83, 1998 Dec 15.
Article in English | MEDLINE | ID: mdl-9862708

ABSTRACT

The role of variant surface glycoprotein (VSG)-specific Th cell responses in determining resistance to the African trypanosomes was examined by comparing Th cell responses in relatively resistant and susceptible mice as well as in cytokine gene knockout mice infected with Trypanosoma brucei rhodesiense. Resistant B10.BR and C57BL/6 mice expressed Th1 cell cytokine responses to VSG stimulation during infection, while susceptible C3H mice produced weak or no Th1 cell cytokine responses. Neither resistant B10.BR and C57BL/6 mice nor susceptible C3H mice made detectable Th2 cell cytokine responses to parasite Ag. To more closely examine the potential role of IFN-gamma and other cytokines in host resistance, we determined the resistance phenotypes and Th cell responses of IFN-gamma and IL-4 knockout mice. Infected C57BL/6-IFN-gamma knockout mice were as susceptible as C57BL/6-scid mice and made an IL-2, but not an IL-4, cytokine response to VSG, while C57BL/6-IL-4 knockout mice were as resistant as the wild-type strain and exhibited both IL-2 and IFN-gamma cytokine responses. Passive transfer of spleen cells from wild-type mice to IFN-gamma knockout mice resulted in enhanced survival. Both wild-type and IFN-gamma knockout mice controlled parasitemia with VSG-specific Ab responses, although parasitemias were higher in the IFN-gamma knockout mice. Overall, this study demonstrates for the first time that relative resistance to African trypanosomes is associated with a strong Th1 cell response to parasite Ags, that IFN-gamma, but not IL-4, is linked to host resistance, and that susceptible animals do not make compensatory Th2 cell responses in the absence of Th1 cell cytokine responses.


Subject(s)
Interferon-gamma/physiology , Th1 Cells/immunology , Trypanosoma brucei brucei/immunology , Trypanosomiasis, African/immunology , Variant Surface Glycoproteins, Trypanosoma/immunology , Adoptive Transfer , Animals , Antibodies, Protozoan/biosynthesis , Antibodies, Protozoan/immunology , Cells, Cultured , Female , Immunity, Innate , Interferon-gamma/deficiency , Interferon-gamma/genetics , Interleukin-2/genetics , Interleukin-2/physiology , Interleukin-4/deficiency , Interleukin-4/genetics , Interleukin-4/physiology , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Knockout , Mice, SCID , Parasitemia/prevention & control , RNA, Messenger/biosynthesis , Species Specificity , Spleen/cytology , Spleen/immunology , Th1 Cells/metabolism , Trypanosomiasis, African/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...