Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Neurochem Res ; 42(6): 1747-1766, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28214987

ABSTRACT

The Jimpy mouse illustrates the importance of interactions between astrocytes and oligodendrocytes. It has a mutation in Plp coding for proteolipid protein and DM20. Its behavior is normal at birth but from the age of ~2 weeks it shows severe convulsions associated with oligodendrocyte/myelination deficits and early death. A normally occurring increase in oxygen consumption by highly elevated K+ concentrations is absent in Jimpy brain slices and cultured astrocytes, reflecting that Plp at early embryonic stages affects common precursors as also shown by the ability of conditioned medium from normal astrocytes to counteract histological abnormalities. This metabolic response is now known to reflect opening of L-channels for Ca2+. The resulting deficiency in Ca2+ entry has many consequences, including lack of K+-stimulated glycogenolysis and release of gliotransmitter ATP. Lack of purinergic stimulation compromises oligodendrocyte survival and myelination and affects connexins and K+ channels. Mice lacking the oligodendrocytic connexins Cx32 and 47 show similar neurological dysfunction as Jimpy. This possibly reflects that K+ released by intermodal axonal Kv channels is transported underneath a loosened myelin sheath instead of reaching the extracellular space via connexin-mediated transport to oligodendrocytes, followed by release and astrocytic Na+,K+-ATPase-driven uptake with subsequent Kir4.1-facilitated release and neuronal uptake.


Subject(s)
Connexins/deficiency , Demyelinating Diseases/metabolism , Oligodendroglia/metabolism , Potassium Channels, Inwardly Rectifying/metabolism , Seizures/metabolism , Animals , Astrocytes/metabolism , Astrocytes/pathology , Connexins/genetics , Demyelinating Diseases/genetics , Demyelinating Diseases/pathology , Humans , Mice , Mice, Jimpy , Myelin Sheath/genetics , Myelin Sheath/metabolism , Myelin Sheath/pathology , Oligodendroglia/pathology , Potassium Channels, Inwardly Rectifying/genetics , Seizures/genetics , Seizures/pathology , Sodium-Potassium-Exchanging ATPase/deficiency , Sodium-Potassium-Exchanging ATPase/genetics , Gap Junction beta-1 Protein
2.
J Neurosci Res ; 85(15): 3480-6, 2007 Nov 15.
Article in English | MEDLINE | ID: mdl-17410598

ABSTRACT

During glucose deprivation an increase in aspartate formation from glutamine has been observed in different brain preparations, including synaptosomes and cultured astrocytes. To what extent this reaction, which provides a substantial amount of energy, occurs in different types of neurons is unknown. The present study shows that (14)CO(2) formation from [U-(14)C]glutamine in cerebellar granule neurons, a glutamatergic preparation, increased by 60% during glucose deprivation, indicating enhanced aspartate formation or increased complete oxidative degradation of glutamine. In primary cultures of cerebrocortical interneurons, a GABAergic preparation, the rate of (14)CO(2) production from [U-(14) C] glutamine was four times lower and not stimulated by glucose deprivation. During incubation with glutamine (0.8 mM) as the only metabolic substrate, cerebellar granule cells maintained an oxygen consumption rate of 12 nmol/min/mg protein, corresponding to an aspartate formation of 8 nmol/min/mg protein (three oxidations occur between glutamine and aspartate) or to a total oxidative degradation of 3 nmol/min/mg protein. During glucose deprivation, the rate of aspartate formation increased, and during a 20-min incubation in phosphate-buffered saline it amounted to 3.3 nmol/min/mg protein at 0.2 mM glutamine, which might have been more if measured at 0.8 mM glutamine. These values are consistent with the rate of glutamine utilization calculated based on oxygen consumption and leaves open the possibility that some glutamine is completely degraded oxidatively, as has been shown by other authors based on pyruvate recycling and labeling of lactate from aspartate in cerebellar granule neurons.


Subject(s)
Energy Metabolism/physiology , Glucose/deficiency , Glutamine/metabolism , Neurons/metabolism , Animals , Aspartic Acid/metabolism , Cells, Cultured , Chromatography, High Pressure Liquid , Glutamic Acid/metabolism , Mice , Oxygen Consumption/physiology
3.
Neurochem Int ; 43(4-5): 355-61, 2003.
Article in English | MEDLINE | ID: mdl-12742079

ABSTRACT

Utilization of glucose by adult brain as its metabolic substrate does not mean that glutamate cannot be synthesized from glucose and subsequently oxidatively degraded. Between 10 and 20% of total pyruvate metabolism in brain occurs as formation of oxaloacetate (OAA), a tricarboxylic acid (TCA) cycle intermediate, from pyruvate plus CO(2). This anaplerotic ('pool-filling') process occurs in astrocytes, which in contrast to neurons express pyruvate carboxylase (PC) activity. Equivalent amounts of pyruvate are converted to acetylcoenzyme A and condensed with oxaloacetate to form citrate (Cit), which is metabolized to alpha-ketoglutarate (generating oxidatively-derived energy), glutamate and glutamine and transferred to neurons in the glutamate-glutamine cycle and used as precursor for transmitter glutamate. Since the blood-brain barrier is poorly permeable to glutamate and its metabolites, net synthesis of glutamate must be followed by degradation of equivalent amounts of glutamate, a cataplerotic ('pool-emptying') process, in which glutamate is converted in the TCA cycle to malate or oxaloacetate (generating additional energy), which exit the cycle to form one molecule pyruvate. To obtain an estimate of the rate of astrocytic oxidation of glutamate the rate of oxygen consumption was measured in primary cultures of mouse astrocytes metabolizing glutamate in the absence of other metabolic substrates. The observed rate is compatible with complete oxidative degradation of glutamate.


Subject(s)
Astrocytes/metabolism , Citric Acid Cycle , Glutamic Acid/metabolism , Oxygen Consumption , Animals , Cells, Cultured , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...