Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(2): eadd6439, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36630504

ABSTRACT

We report a huge organic diversity in the Tissint Mars meteorite and the sampling of several mineralogical lithologies, which revealed that the organic molecules were nonuniformly distributed in functionality and abundance. The range of organics in Tissint meteorite were abundant C3-7 aliphatic branched carboxylic acids and aldehydes, olefins, and polyaromatics with and without heteroatoms in a homologous oxidation structural continuum. Organomagnesium compounds were extremely abundant in olivine macrocrystals and in the melt veins, reflecting specific organo-synsthesis processes in close interaction with the magnesium silicates and temperature stresses, as previously observed. The diverse chemistry and abundance in complex molecules reveal heterogeneity in organic speciation within the minerals grown in the martian mantle and crust that may have evolved over geological time.

2.
Molecules ; 27(24)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36558021

ABSTRACT

The conversion of lignocellulosic biomass by pyrolysis or hydrothermal liquefaction gives access to a wide variety of molecules that can be used as fuel or as building blocks in the chemical industry. For such purposes, it is necessary to obtain their detailed chemical composition to adapt the conversion process, including the upgrading steps. Petroleomics has emerged as an integral approach to cover a missing link in the investigation bio-oils and linked products. It relies on ultra-high-resolution mass spectrometry to attempt to unravel the contribution of many compounds in complex samples by a non-targeted approach. The most recent developments in petroleomics partially alter the discriminating nature of the non-targeted analyses. However, a peak referring to one chemical formula possibly hides a forest of isomeric compounds, which may present a large chemical diversity concerning the nature of the chemical functions. This identification of chemical functions is essential in the context of the upgrading of bio-oils. The latest developments dedicated to this analytical challenge will be reviewed and discussed, particularly by integrating ion source features and incorporating new steps in the analytical workflow. The representativeness of the data obtained by the petroleomic approach is still an important issue.


Subject(s)
Complex Mixtures , Oils , Mass Spectrometry/methods , Renewable Energy , Biomass , Biofuels/analysis
3.
Biology (Basel) ; 11(12)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36552278

ABSTRACT

The increased use of antidepressants, along with their increased occurrence in aquatic environments, is of concern for marine organisms. Although these pharmaceutical compounds have been shown to negatively affect marine diatoms, their mode of action in these non-target, single-cell phototrophic organisms is yet unknown. Using a Fourier-transform ion cyclotron-resonance mass spectrometer (FT-ICR-MS) we evaluated the effects of fluoxetine in the metabolomics of the model diatom Phaeodactylum tricornutum, as well as the potential use of the identified metabolites as exposure biomarkers. Diatom growth was severely impaired after fluoxetine exposure, particularly in the highest dose tested, along with a down-regulation of photosynthetic and carbohydrate metabolisms. Notably, several mechanisms that are normally down-regulated by fluoxetine in mammal organisms were also down-regulated in diatoms (e.g., glycerolipid metabolism, phosphatidylinositol signalling pathway, vitamin metabolism, terpenoid backbone biosynthesis and serotonin remobilization metabolism). Additionally, the present work also identified a set of potential biomarkers of fluoxetine exposure that were up-regulated with increasing fluoxetine exposure concentration and are of high metabolic significance following the disclosed mode of action, reinforcing the use of metabolomics approaches in ecotoxicology.

4.
Foods ; 9(10)2020 Oct 16.
Article in English | MEDLINE | ID: mdl-33081198

ABSTRACT

The water-based extraction of bioactive components from flavonoid-rich medicinal plants is a key step that should be better investigated. This is especially true when dealing with easy-to-use home-made conditions of extractions, which are known to be a bottleneck in the course for a better control and optimization of the daily uptake of active components from medicinal plants. In this work, the water-based extraction of Blackcurrant (Ribes nigrum) leaves (BC) and Chrysanthellum americanum (CA), known to have complementary pharmacological properties, was studied and compared with a previous work performed on the extraction of Hawthorn (Crataegus, HAW). Various extraction modes in water (infusion, percolation, maceration, ultrasounds, microwaves) were compared for the extraction of bioactive principles contained in BC and CA in terms of extraction yield, of amount of flavonoids, phenolic compounds, and proanthocyanidin oligomers, and of UHPLC profiles of the extracted compounds. The qualitative and quantitative aspects of the extraction, in addition to the kinetic of extraction, were studied. The optimized easy-to-use-at-home extraction protocol developed for HAW was found very efficient to easily extract bioactive components from BC and CA plants. UHPLC-ESI-MS and high-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were also implemented to get more qualitative information on the specific and common chemical compositions of the three plants (including HAW). Their antihyaluronidase, antioxidant, and antihypertensive activities were also determined and compared, demonstrating similar activities as the reference compound for some of these plants.

5.
Molecules ; 24(23)2019 Dec 03.
Article in English | MEDLINE | ID: mdl-31816956

ABSTRACT

Hawthorn (Crataegus) is used for its cardiotonic, hypotensive, vasodilative, sedative, antiatherosclerotic, and antihyperlipidemic properties. One of the main goals of this work was to find a well-defined optimized extraction protocol usable by each of us that would lead to repeatable, controlled, and quantified daily uptake of active components from hawthorn at a drinkable temperature (below 60 °C). A thorough investigation of the extraction mode in water (infusion, maceration, percolation, ultrasounds, microwaves) on the yield of extraction and the amount of phenolic compounds, flavonoids, and proanthocyanidin oligomers as well as on the Ultra High Performance Liquid Chromatography (UHPLC) profiles of the extracted compounds was carried out. High-resolution Fourier transform ion cyclotron resonance mass spectrometry was also implemented to discriminate the different samples and conditions of extraction. The quantitative and qualitative aspects of the extraction as well as the kinetics of extraction were studied, not only according to the part (flowers or leaves), the state (fresh or dried), and the granulometry of the dry plant, but also the stirring speed, the temperature, the extraction time, the volume of the container (cup, mug or bowl) and the use of infusion bags.


Subject(s)
Crataegus/chemistry , Flavonoids/isolation & purification , Proanthocyanidins/isolation & purification , Chromatography, High Pressure Liquid , Flowers/chemistry , Plant Extracts/chemistry , Plant Leaves/chemistry , Spectroscopy, Fourier Transform Infrared , Water/analysis
6.
Life (Basel) ; 9(2)2019 Jun 06.
Article in English | MEDLINE | ID: mdl-31174398

ABSTRACT

The investigation of the abundant organic matter in primitive meteorite such as carbonaceous chondrites is of major interest in the field of origin of life. In this study, the soluble organic fraction of the Murchison meteorite was analyzed by atmospheric pressure photoionization (APPI) and electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), in both detection modes. Such an approach ensured that we obtained an extensive description of the organic matter of the CM2 meteorite. Indeed, while in total close to 16,000 unique features were assigned, only 4% are common to all analyses, illustrating the complementarity of both the detection modes and the ionization sources. ESI FT-ICR MS analysis, in negative-ion mode, ensured to observe specifically CHOS and CHNOS species, whereas the positive-ion mode is more dedicated to the detection of CHNO and CHN species. Moreover, new organomagnesium components were observed in (+) ESI. Eventually, (+) APPI FT-ICR MS analysis was a preferred method for the detection of less polar or nonpolar species such as polycyclic aromatic hydrocarbons but also heteroatom aromatic species composing the organic matter of Murchison.

7.
J Am Soc Mass Spectrom ; 29(10): 1951-1962, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30062475

ABSTRACT

The pyrolysis of the lignocellulosic biomass is a promising process to produce biofuels or green chemicals. Specific analytical methods have to be developed in order to better understand the composition of biomass and of its pyrolysis products and therefore to optimize the design of pyrolysis processes. For this purpose, different biomasses (Douglas and Miscanthus) and one biochar were analyzed by laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry (LDI FT-ICR MS). This method allowed the biomass and biochar to be analyzed without any sample preparation and with a spatial resolution of about 100 µm. The influence of LDI conditions (laser wavelength and laser irradiance) and the nature of the biomass and biochar on the obtained mass spectrum were investigated. The nature and origin of the observed ions highly depended on LDI conditions. In the softest laser-biomass interaction conditions (low laser irradiance), the detected ions were related to the nature of the investigated biomass. Indeed, the main part of the detected species came from the different biomass subunits and was produced by photolysis of covalent bonds. When more severe laser irradiation conditions were used, the obtained mass spectra gathered the ions relative to (i) the chemical components of the investigated samples, (ii) the recombination products of these species in the gas phase after their ejection from the sample surface, and (iii) the compounds produced by laser pyrolysis of the sample. This was expected to be useful to mimic thermal pyrolysis. Graphical Abstract.

8.
J Am Soc Mass Spectrom ; 29(3): 543-557, 2018 03.
Article in English | MEDLINE | ID: mdl-29340956

ABSTRACT

Ammonia is well suited to favor deprotonation process in electrospray ionization mass spectrometry (ESI-MS) to increase the formation of [M - H]-. Nevertheless, NH3 may react with carbonyl compounds (aldehyde, ketone) and bias the composition description of the investigated sample. This is of significant importance in the study of complex mixture such as oil or bio-oil. To assess the ability of primary amines to form imines with carbonyl compounds during the ESI-MS process, two aldehydes (vanillin and cinnamaldehyde) and two ketones (butyrophenone and trihydroxyacetophenone) have been infused in an ESI source with ammonia and two different amines (aniline and 3-chloronaniline). The (+) ESI-MS analyses have demonstrated the formation of imine whatever the considered carbonyl compound and the used primary amine, the structure of which was extensively studied by tandem mass spectrometry. Thus, it has been established that the addition of ammonia, in the solution infused in an ESI source, may alter the composition description of a complex mixture and leads to misinterpretations due to the formation of imines. Nevertheless, this experimental bias can be used to identify the carbonyl compounds in a pyrolysis bio-oil. As we demonstrated, infusion of the bio-oil with 3-chloroaniline in ESI source leads to specifically derivatized carbonyl compounds. Thanks to their chlorine isotopic pattern and the high mass measurement accuracy, (+) ESI Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) unambiguously highlighted them from the numerous CxHyOz bio-oil components. These results offer a new perspective into the detailed molecular structure of complex mixtures such as bio-oils. Graphical Abstract ᅟ.

9.
Anal Chim Acta ; 969: 26-34, 2017 May 29.
Article in English | MEDLINE | ID: mdl-28411627

ABSTRACT

The comprehensive description of complex mixtures such as bio-oils is required to understand and improve the different processes involved during biological, environmental or industrial operation. In this context, we have to consider how different ionization sources can improve a non-targeted approach. Thus, the Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) has been coupled to electrospray ionization (ESI), laser desorption ionization (LDI) and atmospheric pressure photoionization (APPI) to characterize an oak pyrolysis bio-oil. Close to 90% of the all 4500 compound formulae has been attributed to CxHyOz with similar oxygen class compound distribution. Nevertheless, their relative abundance in respect with their double bound equivalent (DBE) value has evidenced significant differences depending on the ion source used. ESI has allowed compounds with low DBE but more oxygen atoms to be ionized. APPI has demonstrated the efficient ionization of less polar compounds (high DBE values and less oxygen atoms). The LDI behavior of bio-oils has been considered intermediate in terms of DBE and oxygen amounts but it has also been demonstrated that a significant part of the features are specifically detected by this ionization method. Thus, the complementarity of three different ionization sources has been successfully demonstrated for the exhaustive characterization by petroleomic approach of a complex mixture.


Subject(s)
Atmospheric Pressure , Fourier Analysis , Plant Oils/chemistry , Polyphenols/chemistry , Spectrometry, Mass, Electrospray Ionization , Complex Mixtures/chemistry , Mass Spectrometry , Quercus
SELECTION OF CITATIONS
SEARCH DETAIL
...