Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22268715

ABSTRACT

The nature and dynamics of mutations associated with the emergence, spread and vanishing of SARS-CoV-2 variants causing successive waves are complex1-5. We determined the kinetics of the most common French variant ("Marseille-4") for 10 months since its onset in July 20205. Here, we analysed and classified into subvariants and lineages 7,453 genomes obtained by next-generation sequencing. We identified two subvariants, Marseille-4A, which contains 22 different lineages of at least 50 genomes, and Marseille-4B. Their average lifetime was 4.1{+/-}1.4 months, during which 4.1{+/-}2.6 mutations accumulated. Growth rate was 0.079{+/-}0.045, varying from 0.010 to 0.173. All the lineages exhibited a "gamma" distribution. Several beneficial mutations at unpredicted sites initiated a new outbreak, while the accumulation of other mutations resulted in more viral heterogenicity, increased diversity and vanishing of the lineages. Marseille-4B emerged when the other Marseille-4 lineages vanished. Its ORF8 gene was knocked out by a stop codon, as reported in several mink lineages and in the alpha variant. This subvariant was associated with increased hospitalization and death rates, suggesting that ORF8 is a nonvirulence gene. We speculate that the observed heterogenicity of a lineage may predict the end of the outbreak.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21262922

ABSTRACT

After the end of the first epidemic episode of SARS-CoV-2 infections, as cases began to rise again during the summer of 2020, we at IHU Mediterranee Infection in Marseille, France, intensified the genomic surveillance of SARS-CoV-2, and described the first viral variants. In this study, we compared the incidence curves of SARS-CoV-2-associated deaths in different countries and reported the classification of SARS-CoV-2 variants detected in our institute, as well as the kinetics and sources of the infections. We used mortality collected from a COVID-19 data repository for 221 countries. Viral variants were defined based on [≥]5 hallmark mutations shared by [≥]30 genomes. SARS-CoV-2 genotype was determined for 24,181 patients using next-generation genome and gene sequencing (in 47% and 11% of cases, respectively) or variant-specific qPCR (in 42% of cases). Sixteen variants were identified by analysing viral genomes from 9,788 SARS-CoV-2-diagnosed patients. Our data show that since the first SARS-CoV-2 epidemic episode in Marseille, importation through travel from abroad was documented for seven of the new variants. In addition, for the B.1.160 variant of Pangolin classification (a.k.a. Marseille-4), we suspect transmission from mink farms. In conclusion, we observed that the successive epidemic peaks of SARS-CoV-2 infections are not linked to rebounds of viral genotypes that are already present but to newly-introduced variants. We thus suggest that border control is the best mean of combating this type of introduction, and that intensive control of mink farms is also necessary to prevent the emergence of new variants generated in this animal reservoir.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-20248758

ABSTRACT

BACKGROUNDIn Marseille, France, the COVID-19 incidence evolved unusually with several successive epidemic episodes. The second outbreak started in July, was associated with North Africa, and involved travelers and an outbreak on passenger ships. This suggested the involvement of a new viral variant. METHODSWe sequenced the genomes from 916 SARS-CoV-2 strains from COVID-19 patients in our institute. The patients demographic and clinical features were compared according to the infecting viral variant. RESULTSFrom June 26th to August 14th, we identified a new viral variant (Marseille-1). Based on genome sequences (n=89) or specific qPCR (n=53), 142 patients infected with this variant were detected. It is characterized by a combination of 10 mutations located in the nsp2, nsp3, nsp12, S, ORF3a, ORF8 and N/ORF14 genes. We identified Senegal and Gambia, where the virus had been transferred from China and Europe in February-April as the sources of the Marseille-1 variant, which then most likely reached Marseille through Maghreb when French borders reopened. In France, this variant apparently remained almost limited to Marseille. In addition, it was significantly associated with a milder disease compared to clade 20A ancestor strains. CONCLUSIONOur results demonstrate that SARS-CoV-2 can genetically diversify rapidly, its variants can diffuse internationally and cause successive outbreaks.

SELECTION OF CITATIONS
SEARCH DETAIL
...