Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
J Fungi (Basel) ; 7(12)2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34947060

ABSTRACT

The black yeast Exophiala lecanii-corni of the order Chaetothyriales is notable for its ability to produce abundant quantities of DHN-melanin. While many other Exophiala species are frequent causal agents of human infection, E. lecanii-corni CBS 102400 lacks the thermotolerance requirements that enable pathogenicity, making it appealing for use in targeted functional studies and biotechnological applications. Here, we report the stress tolerance characteristics of E. lecanii-corni, with an emphasis on the influence of melanin on its resistance to various forms of stress. We find that E. lecanii-corni has a distinct stress tolerance profile that includes variation in resistance to temperature, osmotic, and oxidative stress relative to the extremophilic and pathogenic black yeast Exophiala dermatitidis. Notably, the presence of melanin substantially impacts stress resistance in E. lecanii-corni, while this was not found to be the case in E. dermatitidis. The cellular context, therefore, influences the role of melanin in stress protection. In addition, we present a detailed analysis of the E. lecanii-corni genome, revealing key differences in functional genetic content relative to other ascomycetous species, including a significant decrease in abundance of genes encoding ribosomal proteins. In all, this study provides insight into how genetics and physiology may underlie stress tolerance and enhances understanding of the genetic diversity of black yeasts.

2.
Genome Biol ; 20(1): 174, 2019 08 26.
Article in English | MEDLINE | ID: mdl-31451112

ABSTRACT

Reconstructing genomic segments from metagenomics data is a highly complex task. In addition to general challenges, such as repeats and sequencing errors, metagenomic assembly needs to tolerate the uneven depth of coverage among organisms in a community and differences between nearly identical strains. Previous methods have addressed these issues by smoothing genomic variants. We present a variant-aware metagenomic scaffolder called MetaCarvel, which combines new strategies for repeat detection with graph analytics for the discovery of variants. We show that MetaCarvel can accurately reconstruct genomic segments from complex microbial mixtures and correctly identify and characterize several classes of common genomic variants.


Subject(s)
Algorithms , Genetic Variation , Metagenomics/methods , Acinetobacter/genetics , Base Sequence , Databases, Genetic , Feces/microbiology , Humans , Microbiota/genetics , Mutation/genetics , Repetitive Sequences, Nucleic Acid/genetics , Sequence Analysis, DNA
3.
Integr Biol (Camb) ; 11(5): 235-247, 2019 05 01.
Article in English | MEDLINE | ID: mdl-31251329

ABSTRACT

Successful proteomic characterization of biological material depends on the development of robust sample processing methods. The acorn barnacle Amphibalanus amphitrite is a biofouling model for adhesive processes, but the identification of causative proteins involved has been hindered by their insoluble nature. Although effective, existing sample processing methods are labor and time intensive, slowing progress in this field. Here, a more efficient sample processing method is described which exploits pressure cycling technology (PCT) in combination with protein solvents. PCT aids in protein extraction and digestion for proteomics analysis. Barnacle adhesive proteins can be extracted and digested in the same tube using PCT, minimizing sample loss, increasing throughput to 16 concurrently processed samples, and decreasing sample processing time to under 8 hours. PCT methods produced similar proteomes in comparison to previous methods. Two solvents which were ineffective at extracting proteins from the adhesive at ambient pressure (urea and methanol) produced more protein identifications under pressure than highly polar hexafluoroisopropanol, leading to the identification and description of >40 novel proteins at the interface. Some of these have homology to proteins with elastomeric properties or domains involved with protein-protein interactions, while many have no sequence similarity to proteins in publicly available databases, highlighting the unique adherent processes evolved by barnacles. The methods described here can not only be used to further characterize barnacle adhesive to combat fouling, but may also be applied to other recalcitrant biological samples, including aggregative or fibrillar protein matrices produced during disease, where a lack of efficient sample processing methods has impeded advancement. Data are available via ProteomeXchange with identifier PXD012730.


Subject(s)
Adhesives , Materials Testing/instrumentation , Proteomics/instrumentation , Proteomics/methods , Thoracica/physiology , Animals , Biofouling , Carbohydrates/chemistry , Computational Biology , Oxidative Stress , Oxygen/chemistry , Peptides/chemistry , Pressure , Protein Binding , Protein Interaction Mapping , Proteome , Solvents
4.
Article in English | MEDLINE | ID: mdl-30701232

ABSTRACT

We present the complete genome sequence of Vibrio campbellii DS40M4, assembled from Illumina and Oxford Nanopore data. This effort improves upon a previous draft assembly to resolve this organism's two-chromosome and one-plasmid genetic structure and to provide valuable context for evaluating the gene arrangement and evolution of this species.

5.
Genome Announc ; 6(20)2018 May 17.
Article in English | MEDLINE | ID: mdl-29773633

ABSTRACT

Vibrio campbellii is a pathogen of aquatic animals and has been proposed as a bacterial partner in the formation of bioluminescent milky seas. We present here the complete genome sequences assembled from Illumina and Oxford Nanopore data for two bioluminescent Vibrio campbellii strains (BoB-53 and BoB-90) isolated from biofouled moorings in the Bay of Bengal.

6.
Proteomes ; 6(1)2018 Jan 31.
Article in English | MEDLINE | ID: mdl-29385081

ABSTRACT

The impact of microbial communities, also known as the microbiome, on human health and the environment is receiving increased attention. Studying translated gene products (proteins) and comparing metaproteomic profiles may elucidate how microbiomes respond to specific environmental stimuli, and interact with host organisms. Characterizing proteins expressed by a complex microbiome and interpreting their functional signature requires sophisticated informatics tools and workflows tailored to metaproteomics. Additionally, there is a need to disseminate these informatics resources to researchers undertaking metaproteomic studies, who could use them to make new and important discoveries in microbiome research. The Galaxy for proteomics platform (Galaxy-P) offers an open source, web-based bioinformatics platform for disseminating metaproteomics software and workflows. Within this platform, we have developed easily-accessible and documented metaproteomic software tools and workflows aimed at training researchers in their operation and disseminating the tools for more widespread use. The modular workflows encompass the core requirements of metaproteomic informatics: (a) database generation; (b) peptide spectral matching; (c) taxonomic analysis and (d) functional analysis. Much of the software available via the Galaxy-P platform was selected, packaged and deployed through an online metaproteomics "Contribution Fest" undertaken by a unique consortium of expert software developers and users from the metaproteomics research community, who have co-authored this manuscript. These resources are documented on GitHub and freely available through the Galaxy Toolshed, as well as a publicly accessible metaproteomics gateway Galaxy instance. These documented workflows are well suited for the training of novice metaproteomics researchers, through online resources such as the Galaxy Training Network, as well as hands-on training workshops. Here, we describe the metaproteomics tools available within these Galaxy-based resources, as well as the process by which they were selected and implemented in our community-based work. We hope this description will increase access to and utilization of metaproteomics tools, as well as offer a framework for continued community-based development and dissemination of cutting edge metaproteomics software.

7.
Microb Biotechnol ; 11(1): 98-111, 2018 01.
Article in English | MEDLINE | ID: mdl-28696003

ABSTRACT

Biocathode microbial communities are proposed to catalyse a range of useful reactions. Unlike bioanodes, model biocathode organisms have not yet been successfully cultivated in isolation highlighting the need for culture-independent approaches to characterization. Biocathode MCL (Marinobacter, Chromatiaceae, Labrenzia) is a microbial community proposed to couple CO2 fixation to extracellular electron transfer and O2 reduction. Previous metagenomic analysis of a single MCL bioelectrochemical system (BES) resulted in resolution of 16 bin genomes. To further resolve bin genomes and compare community composition across replicate MCL BES, we performed shotgun metagenomic and 16S rRNA gene (16S) sequencing at steady-state current. Clustering pooled reads from replicate BES increased the number of resolved bin genomes to 20, over half of which were > 90% complete. Direct comparison of unassembled metagenomic reads and 16S operational taxonomic units (OTUs) predicted higher community diversity than the assembled/clustered metagenome and the predicted relative abundances did not match. However, when 16S OTUs were mapped to bin genomes and genome abundance was scaled by 16S gene copy number, estimated relative abundance was more similar to metagenomic analysis. The relative abundance of the bin genome representing 'Ca. Tenderia electrophaga' was correlated with increasing current, further supporting the hypothesis that this organism is the electroautotroph.


Subject(s)
Bioelectric Energy Sources , Biota , Chromatiaceae/isolation & purification , Chromatiaceae/metabolism , Electrodes/microbiology , Carbon Dioxide/metabolism , Chromatiaceae/classification , Chromatiaceae/genetics , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Metagenomics , Oxidation-Reduction , Oxygen/metabolism , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
8.
mSystems ; 2(2)2017.
Article in English | MEDLINE | ID: mdl-28382330

ABSTRACT

Biocathodes provide a stable electron source to drive reduction reactions in electrotrophic microbial electrochemical systems. Electroautotrophic biocathode communities may be more robust than monocultures in environmentally relevant settings, but some members are not easily cultivated outside the electrode environment. We previously used metagenomics and metaproteomics to propose a pathway for coupling extracellular electron transfer (EET) to carbon fixation in "Candidatus Tenderia electrophaga," an uncultivated but dominant member of an electroautotrophic biocathode community. Here we validate and refine this proposed pathway using metatranscriptomics of replicate aerobic biocathodes poised at the growth potential level of 310 mV and the suboptimal 470 mV (versus the standard hydrogen electrode). At both potentials, transcripts were more abundant from "Ca. Tenderia electrophaga" than from any other constituent, and its relative activity was positively correlated with current. Several genes encoding key components of the proposed "Ca. Tenderia electrophaga" EET pathway were more highly expressed at 470 mV, consistent with a need for cells to acquire more electrons to obtain the same amount of energy as at 310 mV. These included cyc2, encoding a homolog of a protein known to be involved in iron oxidation. Mean expression of all CO2 fixation-related genes is 0.27 log2-fold higher at 310 mV, indicating that reduced energy availability at 470 mV decreased CO2 fixation. Our results substantiate the claim that "Ca. Tenderia electrophaga" is the key electroautotroph, which will help guide further development of this community for microbial electrosynthesis. IMPORTANCE Bacteria that directly use electrodes as metabolic electron donors (biocathodes) have been proposed for applications ranging from microbial electrosynthesis to advanced bioelectronics for cellular communication with machines. However, just as we understand very little about oxidation of analogous natural insoluble electron donors, such as iron oxide, the organisms and extracellular electron transfer (EET) pathways underlying the electrode-cell direct electron transfer processes are almost completely unknown. Biocathodes are a stable biofilm cultivation platform to interrogate both the rate and mechanism of EET using electrochemistry and to study the electroautotrophic organisms that catalyze these reactions. Here we provide new evidence supporting the hypothesis that the uncultured bacterium "Candidatus Tenderia electrophaga" directly couples extracellular electron transfer to CO2 fixation. Our results provide insight into developing biocathode technology, such as microbial electrosynthesis, as well as advancing our understanding of chemolithoautotrophy.

9.
Genome Announc ; 4(3)2016 May 12.
Article in English | MEDLINE | ID: mdl-27174270

ABSTRACT

Here, we present the complete genome sequence of Labrenzia sp. strain CP4, isolated from an electricity-consuming marine biocathode biofilm. Labrenzia sp. strain CP4 consists of a circular 5.2 Mbp chromosome and an 88 Kbp plasmid.

10.
Genome Announc ; 3(5)2015 Sep 24.
Article in English | MEDLINE | ID: mdl-26404584

ABSTRACT

Marinobacter sp. CP1 was isolated from a self-regenerating and self-sustaining biocathode biofilm that can fix CO2 and generate electric current. We present the complete genome sequence of this strain, which consists of a circular 4.8-Mbp chromosome, to understand the mechanism of extracellular electron transfer in a microbial consortium.

11.
Genome Announc ; 3(1)2015 Jan 29.
Article in English | MEDLINE | ID: mdl-25635019

ABSTRACT

Vibrio harveyi is a Gram-negative marine γ-proteobacterium that is known to be a formidable pathogen of aquatic animals and is a model organism for the study of bacterial bioluminescence and quorum sensing. In this report, we describe the complete genome sequence of the most studied strain of this species: V. harveyi ATCC 33843 (392 [MAV]).

12.
Appl Environ Microbiol ; 81(2): 699-712, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25398855

ABSTRACT

Biocathode extracellular electron transfer (EET) may be exploited for biotechnology applications, including microbially mediated O2 reduction in microbial fuel cells and microbial electrosynthesis. However, biocathode mechanistic studies needed to improve or engineer functionality have been limited to a few select species that form sparse, homogeneous biofilms characterized by little or no growth. Attempts to cultivate isolates from biocathode environmental enrichments often fail due to a lack of some advantage provided by life in a consortium, highlighting the need to study and understand biocathode consortia in situ. Here, we present metagenomic and metaproteomic characterization of a previously described biocathode biofilm (+310 mV versus a standard hydrogen electrode [SHE]) enriched from seawater, reducing O2, and presumably fixing CO2 for biomass generation. Metagenomics identified 16 distinct cluster genomes, 15 of which could be assigned at the family or genus level and whose abundance was roughly divided between Alpha- and Gammaproteobacteria. A total of 644 proteins were identified from shotgun metaproteomics and have been deposited in the the ProteomeXchange with identifier PXD001045. Cluster genomes were used to assign the taxonomic identities of 599 proteins, with Marinobacter, Chromatiaceae, and Labrenzia the most represented. RubisCO and phosphoribulokinase, along with 9 other Calvin-Benson-Bassham cycle proteins, were identified from Chromatiaceae. In addition, proteins similar to those predicted for iron oxidation pathways of known iron-oxidizing bacteria were observed for Chromatiaceae. These findings represent the first description of putative EET and CO2 fixation mechanisms for a self-regenerating, self-sustaining multispecies biocathode, providing potential targets for functional engineering, as well as new insights into biocathode EET pathways using proteomics.


Subject(s)
Bioelectric Energy Sources , Carbon Dioxide/metabolism , Chromatiaceae/isolation & purification , Chromatiaceae/metabolism , Electrodes/microbiology , Biota , Chromatiaceae/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Metagenome , Microbial Consortia , Molecular Sequence Data , Proteome , Sequence Analysis, DNA
13.
Biofouling ; 30(10): 1211-23, 2014.
Article in English | MEDLINE | ID: mdl-25407927

ABSTRACT

Metagenomic and metaproteomic analyses were utilized to determine the composition and function of complex air-water interface biofilms sampled from the hulls of two US Navy destroyers. Prokaryotic community analyses using PhyloChip-based 16S rDNA profiling revealed two significantly different and taxonomically rich biofilm communities (6,942 taxa) in which the majority of unique taxa were ascribed to members of the Gammaproteobacteria, Alphaproteobacteria and Clostridia. Although metagenomic sequencing indicated that both biofilms were dominated by prokaryotic sequence reads (> 91%) with the majority of the bacterial reads belonging to the Alphaproteobacteria, the Ship-1 metagenome harbored greater organismal and functional diversity and was comparatively enriched for sequences from Cyanobacteria, Bacteroidetes and macroscopic eukaryotes, whereas the Ship-2 metagenome was enriched for sequences from Proteobacteria and microscopic photosynthetic eukaryotes. Qualitative liquid chromatography-tandem mass spectrometry metaproteome analyses identified 678 unique proteins, revealed little overlap in species and protein composition between the ships and contrasted with the metagenomic data in that ~80% of classified and annotated proteins were of eukaryotic origin and dominated by members of the Bacillariophyta, Cnidaria, Chordata and Arthropoda (data deposited to the ProteomeXchange, identifier PXD000961). Within the shared metaproteome, quantitative (18)O and iTRAQ analyses demonstrated a significantly greater abundance of structural proteins from macroscopic eukaryotes on Ship-1 and diatom photosynthesis proteins on Ship-2. Photosynthetic pigment composition and elemental analyses confirmed that both biofilms were dominated by phototrophic processes. These data begin to provide a better understanding of the complex organismal and biomolecular composition of marine biofilms while highlighting caveats in the interpretation of stand-alone environmental '-omics' datasets.


Subject(s)
Biofilms , Metagenome , Proteome , Alphaproteobacteria/classification , Cyanobacteria/classification , Gammaproteobacteria/classification , Metagenomics/methods , Proteomics/methods , RNA, Ribosomal, 16S/genetics , Seawater/microbiology , Ships
14.
Mol Cell Probes ; 28(2-3): 51-7, 2014.
Article in English | MEDLINE | ID: mdl-24486298

ABSTRACT

Culture-independent techniques such as LC-MS/MS-based metaproteomic analyses are being increasingly utilized for the study of microbial composition and function in complex environmental samples. Although several studies have documented the many challenges and sources of bias that must be considered in these types of analyses, none have systematically characterized the effect of protein extraction bias on the biological interpretation of true environmental biofilm metaproteomes. In this study, we compared three protein extraction methods commonly used in the analyses of environmental samples [guanidine hydrochloride (GuHCl), B-PER, sequential citrate-phenol (SCP)] using nano-LC-MS/MS and an environmental marine biofilm to determine the unique biases introduced by each method and their effect on the interpretation of the derived metaproteomes. While the protein extraction efficiencies of the three methods ranged from 2.0 to 4.3%, there was little overlap in the sequence (1.9%), function (8.3% of total assigned protein families) and origin of the identified proteins from each extract. Each extraction method enriched for different protein families (GuHCl--photosynthesis, carbohydrate metabolism; B-PER--membrane transport, oxidative stress; SCP--calcium binding, structural) while 23.7-45.4% of the identified proteins lacked SwissProt annotations. Taken together, the results demonstrated that even the most basic interpretations of this complex microbial assemblage (species composition, ratio of prokaryotic to eukaryotic proteins, predominant functions) varied with little overlap based on the protein extraction method employed. These findings demonstrate the heavy influence of protein extraction on biofilm metaproteomics and provide caveats for the interpretation of such data sets when utilizing single protein extraction methods for the description of complex microbial assemblages.


Subject(s)
Metagenome , Nanotechnology/methods , Proteins/isolation & purification , Proteome/isolation & purification , Proteomics/methods , Biofilms , Chromatography, Liquid , Citrates/chemistry , Guanidine/chemistry , Mass Spectrometry , Proteins/chemistry , Proteins/classification , Proteome/chemistry , Proteome/classification
15.
Genome Announc ; 1(4)2013 Aug 08.
Article in English | MEDLINE | ID: mdl-23929482

ABSTRACT

Vibrio natriegens bacteria are Gram-negative aquatic microorganisms that are found primarily in coastal seawater and sediments and are perhaps best known for their high growth rates (generation time of <10 min). In this study, we report the first sequenced genome of this species, that of the type strain Vibrio natriegens ATCC 14048, a salt marsh mud isolate from Sapelo Island, GA.

16.
Mol Cell Probes ; 27(5-6): 193-9, 2013.
Article in English | MEDLINE | ID: mdl-23831146

ABSTRACT

Culture-independent techniques such as LC-MS/MS-based metaproteomic analyses are being increasingly utilized for the study of microbial composition and function in complex environmental samples. Although several studies have documented the many challenges and sources of bias that must be considered in these types of analyses, none have systematically characterized the effect of protein extraction bias on the biological interpretation of true environmental biofilm metaproteomes. In this study, we compared three protein extraction methods commonly used in the analyses of environmental samples [guanidine hydrochloride (GuHCl), B-PER, sequential citrate-phenol (SCP)] using nano-LC-MS/MS and an environmental marine biofilm to determine the unique biases introduced by each method and their effect on the interpretation of the derived metaproteomes. While the protein extraction efficiencies of the three methods ranged from 2.0 to 4.3%, there was little overlap in the sequence (1.9%), function (8.3% of total assigned protein families) and origin of the identified proteins from each extract. Each extraction method enriched for different protein families (GuHCl - photosynthesis, carbohydrate metabolism; B-PER - membrane transport, oxidative stress; SCP - calcium binding, structural) while 23.7-45.4% of the identified proteins lacked SwissProt annotations. Taken together, the results demonstrated that even the most basic interpretations of this complex microbial assemblage (species composition, ratio of prokaryotic to eukaryotic proteins, predominant functions) varied with little overlap based on the protein extraction method employed. These findings demonstrate the heavy influence of protein extraction on biofilm metaproteomics and provide caveats for the interpretation of such data sets when utilizing single protein extraction methods for the description of complex microbial assemblages.


Subject(s)
Biofilms , Proteins/isolation & purification , Proteome/isolation & purification , Proteomics/methods , Citrates , Databases, Protein , Guanidine , Indicators and Reagents , Mass Spectrometry/methods , Phenol , Proteins/chemistry , Proteins/classification , Proteome/chemistry , Proteome/genetics
17.
Anal Chem ; 84(9): 4006-13, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22468925

ABSTRACT

The large-scale identification and quantitation of proteins via nanoliquid chromatography (LC)-tandem mass spectrometry (MS/MS) offers a unique opportunity to gain unprecedented insight into the microbial composition and biomolecular activity of true environmental samples. However, in order to realize this potential for marine biofilms, new methods of protein extraction must be developed as many compounds naturally present in biofilms are known to interfere with common proteomic manipulations and LC-MS/MS techniques. In this study, we used amino acid analyses (AAA) and LC-MS/MS to compare the efficacy of three sample preparation methods [6 M guanidine hydrochloride (GuHCl) protein extraction + in-solution digestion + 2D LC; sodium dodecyl sulfate (SDS) protein extraction + 1D gel LC; phenol protein extraction + 1D gel LC] for the metaproteomic analyses of an environmental marine biofilm. The AAA demonstrated that proteins constitute 1.24% of the biofilm wet weight and that the compared methods varied in their protein extraction efficiencies (0.85-15.15%). Subsequent LC-MS/MS analyses revealed that the GuHCl method resulted in the greatest number of proteins identified by one or more peptides whereas the phenol method provided the greatest sequence coverage of identified proteins. As expected, metagenomic sequencing of the same biofilm sample enabled the creation of a searchable database that increased the number of protein identifications by 48.7% (≥1 peptide) or 54.7% (≥2 peptides) when compared to SwissProt database identifications. Taken together, our results provide methods and evidence-based recommendations to consider for qualitative or quantitative biofilm metaproteome experimental design.


Subject(s)
Biofilms , Proteins/chemistry , Proteomics/methods , Tandem Mass Spectrometry/methods , Amino Acid Sequence , Chromatography, Liquid/methods , Databases, Protein , Electrophoresis, Polyacrylamide Gel , Molecular Sequence Data , Proteins/isolation & purification
18.
J Proteome Res ; 8(7): 3675-88, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19459691

ABSTRACT

Elucidation of protein-protein interactions can provide new knowledge on protein function. Enrichments of affinity-tagged (or "bait") proteins with interaction partners generally include background, nonspecific protein artifacts. Furthermore, in vivo bait expression may introduce additional artifacts arising from altered physiology or metabolism. In this study, we compared these effects for chromosome and plasmid encoding strategies for bait proteins in two microbes: Escherichia coli and Rhodopseudomonas palustris. Differential metabolic labeling of strains expressing bait protein relative to the wild-type strain in each species allowed comparison by liquid chromatography tandem mass spectrometry (LC-MS-MS). At the local level of the protein complex, authentic interacting proteins of RNA polymerase (RNAP) were successfully discerned from artifactual proteins by the isotopic differentiation of interactions as random or targeted (I-DIRT, Tackett, A. J.; et al. J. Proteome Res. 2005, 4, 1752-1756). To investigate global effects of bait protein production, we compared proteomes from strains harboring a plasmid encoding an affinity-tagged subunit (RpoA) of RNAP with the corresponding wild-type strains. The RpoA abundance ratios of 0.8 for R. palustris and 1.7 for E. coli in plasmid strains versus wild-type indicated only slightly altered expression. While most other proteins also showed no appreciable difference in abundance, several that did show altered levels were involved in amino acid metabolism. Measurements at both local and global levels proved useful for evaluating in vitro and in vivo artifacts of plasmid-encoding strategies for bait protein expression.


Subject(s)
Isotopes/chemistry , Metabolomics/methods , Proteomics/methods , Chromatography, Liquid/methods , Chromosomes , DNA-Directed RNA Polymerases/chemistry , Escherichia coli/metabolism , Ions , Mass Spectrometry/methods , Peptides/chemistry , Plasmids/metabolism , Proteins/chemistry , Proteome , Rhodopseudomonas/metabolism
19.
J Proteome Res ; 7(8): 3319-28, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18590317

ABSTRACT

One of the most promising methods for large-scale studies of protein interactions is isolation of an affinity-tagged protein with its in vivo interaction partners, followed by mass spectrometric identification of the copurified proteins. Previous studies have generated affinity-tagged proteins using genetic tools or cloning systems that are specific to a particular organism. To enable protein-protein interaction studies across a wider range of Gram-negative bacteria, we have developed a methodology based on expression of affinity-tagged "bait" proteins from a medium copy-number plasmid. This construct is based on a broad-host-range vector backbone (pBBR1MCS5). The vector has been modified to incorporate the Gateway DEST vector recombination region, to facilitate cloning and expression of fusion proteins bearing a variety of affinity, fluorescent, or other tags. We demonstrate this methodology by characterizing interactions among subunits of the DNA-dependent RNA polymerase complex in two metabolically versatile Gram-negative microbial species of environmental interest, Rhodopseudomonas palustris CGA010 and Shewanella oneidensis MR-1. Results compared favorably with those for both plasmid and chromosomally encoded affinity-tagged fusion proteins expressed in a model organism, Escherichia coli.


Subject(s)
Bacterial Proteins/metabolism , Gram-Negative Bacteria/metabolism , Affinity Labels , Bacterial Proteins/genetics , Cloning, Molecular , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Escherichia coli/enzymology , Genetic Vectors , Molecular Probes , Plasmids , Protein Interaction Mapping , Protein Subunits/genetics , Protein Subunits/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Rhodopseudomonas/enzymology , Shewanella/enzymology
20.
J Proteome Res ; 6(8): 3054-61, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17616116

ABSTRACT

Standard biochemical techniques that are used for protein enrichments, such as affinity isolation and density gradient centrifugation, frequently yield high-nanogram to low-microgram quantities at a significant expenditure of resources and time. The characterization of selected protein enrichments by the "shotgun" mass spectrometry approach is often compromised by the lack of effective and efficient in-solution proteolysis protocols specifically tailored for these small quantities of proteins. This study compares the results of five different digestion protocols that were applied to 2.5 mug portions of protein isolates from two disparate sources: Rhodopseudomonas palustris 70S ribosomal proteins, and Bos taurus microtubule-associated proteins (MAPs). Proteolytic peptides produced according to each protocol in each type of protein isolate were analyzed by one-dimensional liquid chromatography-tandem mass spectrometry (LC-MS/MS). The effectiveness of each digestion protocol was assessed on the basis of three parameters: number of peptide identifications, number of protein identifications, and sequence coverage. The two protocols using a solvent containing 80% acetonitrile (CH3CN) for trypsin digestions performed as well as, and in some instances better than, protocols employing other solvents and chaotropes in both types of protein isolates. A primary advantage of the 80% CH3CN protocol is that it requires fewer sample manipulation steps.


Subject(s)
Bacterial Proteins/analysis , Microtubule-Associated Proteins/analysis , Rhodopseudomonas/metabolism , Ribosomes/metabolism , Animals , Cattle , Chromatography, Liquid/methods , Guanidine/chemistry , Organic Chemicals/chemistry , Proteome/analysis , Tandem Mass Spectrometry/methods , Trypsin/chemistry , Urea/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...