Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Hepatol Commun ; 4(5): 681-695, 2020 May.
Article in English | MEDLINE | ID: mdl-32363319

ABSTRACT

Overconsumption of carbohydrates and lipids are well known to cause nonalcoholic fatty liver disease (NAFLD), while the role of nutritional protein intake is less clear. In Western diet, meat and other animal products are the main protein source, with varying concentrations of specific amino acids. Whether the amount or composition of protein intake is associated with a higher risk for disease severity has not yet been examined. In this study, we investigated associations of dietary components with histological disease activity by analyzing detailed 14-day food records in a cohort of 61 patients with biopsy-proven NAFLD. Furthermore, we used 16S ribosomal RNA gene sequencing to detect associations with different abundances of the gut microbiota with dietary patterns. Patients with definite nonalcoholic steatohepatitis (NAFLD activity score of 5-8 on liver biopsy) had a significantly higher daily relative intake of protein compared with patients with a NAFLD activity score of 0-4 (18.0% vs. 15.8% of daily protein-based calories, P = 0.018). After adjustment for several potentially confounding factors, a higher protein intake (≥17.3% of daily protein-based calories) remained associated with definite nonalcoholic steatohepatitis, with an odds ratio of 5.09 (95% confidence interval 1.22-21.25, P = 0.026). This association was driven primarily by serine, glycine, arginine, proline, phenylalanine, and methionine. A higher protein intake correlated with a lower Bacteroides abundance and an altered abundance of several other bacterial taxa. Conclusion: A high protein intake was independently associated with more active and severe histological disease activity in patients with NAFLD. Further studies are needed to investigate the potential harmful role of dietary amino acids on NAFLD, with special attention to meat as their major source.

2.
J Biol Chem ; 287(16): 12645-56, 2012 Apr 13.
Article in English | MEDLINE | ID: mdl-22351777

ABSTRACT

The multimeric scaffolding protein gephyrin forms post-synaptic clusters at inhibitory sites, thereby anchoring inhibitory glycine (GlyR) and subsets of γ-aminobutyric acid type A (GABAA) receptors. Gephyrin is composed of three domains, the conserved N-terminal G- and C-terminal E-domain, connected by the central (C-) domain. In this study we investigated the oligomerization, folding and stability, GlyR ß-loop binding, and phosphorylation of three gephyrin splice variants (Geph, Geph-C3, Geph-C4) after expression and purification from insect cells (Sf9). In contrast to Escherichia coli-derived trimeric gephyrin, we found that Sf9 gephyrins form hexamers as basic oligomeric form. In the case of Geph and Geph-C4, also high-oligomeric forms (∼900 kDa) were isolated. Partial proteolysis revealed a compact folding of the Gephyrin G and C domain in one complex, whereas a much lower stability for the E domain was found. After GlyR ß-loop binding, the stability of the E domain increased in Geph and Geph-C4 significantly. In contrast, the E domain in Geph-C3 is less stable and binds the GlyR ß-loop with one order of magnitude lower affinity. Finally, we identified 18 novel phosphorylation sites in gephyrin, of which all except one are located within the C domain. We propose two models for the domain arrangement in hexameric gephyrin based on the oligomerization of either the E or C domains, with the latter being crucial for the regulation of gephyrin clustering.


Subject(s)
Carrier Proteins , Membrane Proteins , Neural Inhibition/physiology , Receptors, Glycine/metabolism , Spodoptera/genetics , Synapses/metabolism , Alternative Splicing/physiology , Animals , Carrier Proteins/chemistry , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cells, Cultured , Membrane Proteins/chemistry , Membrane Proteins/genetics , Membrane Proteins/metabolism , Phosphorylation/physiology , Protein Binding/physiology , Protein Folding , Protein Structure, Quaternary , Protein Structure, Tertiary , Rats , Receptors, GABA/metabolism , Spodoptera/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...