Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 10691, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32612150

ABSTRACT

Plants exude a diverse cocktail of metabolites into the soil as response to exogenous and endogenous factors. So far, root exudates have mainly been studied under artificial conditions due to methodological difficulties. In this study, each five perennial grass and forb species were investigated for polar and semi-polar metabolites in exudates under field conditions. Metabolite collection and untargeted profiling approaches combined with a novel classification method allowed the designation of 182 metabolites. The composition of exuded polar metabolites depended mainly on the local environment, especially soil conditions, whereas the pattern of semi-polar metabolites was primarily affected by the species identity. The profiles of both polar and semi-polar metabolites differed between growth forms, with grass species being generally more similar to each other and more responsive to the abiotic environment than forb species. This study demonstrated the feasibility of investigating exudates under field conditions and to identify the driving factors of exudate composition.


Subject(s)
Plant Exudates/metabolism , Plant Roots/metabolism , Poaceae/metabolism , Asteraceae/classification , Asteraceae/metabolism , Ecosystem , Gas Chromatography-Mass Spectrometry , Grassland , Plant Physiological Phenomena , Plantaginaceae/classification , Plantaginaceae/metabolism , Poaceae/classification , Ranunculaceae/classification , Ranunculaceae/metabolism , Rhizosphere , Rubiaceae/classification , Rubiaceae/metabolism
2.
ISME J ; 14(2): 463-475, 2020 02.
Article in English | MEDLINE | ID: mdl-31659233

ABSTRACT

The active bacterial rhizobiomes and root exudate profiles of phytometers of six plant species growing in central European temperate grassland communities were investigated in three regions located up to 700 km apart, across diverse edaphic conditions and along a strong land use gradient. The recruitment process from bulk soil communities was identified as the major direct driver of the composition of active rhizosphere bacterial communities. Unexpectedly, the effect of soil properties, particularly soil texture, water content, and soil type, strongly dominated over plant properties and the composition of polar root exudates of the primary metabolism. While plant species-specific selection of bacteria was minor, the RNA-based composition of active rhizosphere bacteria substantially differed between rhizosphere and bulk soil. Although other variables could additionally be responsible for the consistent enrichment of particular bacteria in the rhizosphere, distinct bacterial OTUs were linked to the presence of specific polar root exudates independent of individual plant species. Our study also identified numerous previously unknown taxa that are correlated with rhizosphere dynamics and hence represent suitable targets for future manipulations of the plant rhizobiome.


Subject(s)
Bacteria/isolation & purification , Grassland , Rhizosphere , Soil Microbiology , Bacteria/classification , Plant Roots/microbiology , Soil/chemistry
3.
Ecol Evol ; 9(10): 5526-5541, 2019 May.
Article in English | MEDLINE | ID: mdl-31160980

ABSTRACT

In the rhizosphere, plants are exposed to a multitude of different biotic and abiotic factors, to which they respond by exuding a wide range of secondary root metabolites. So far, it has been unknown to which degree root exudate composition is species-specific and is affected by land use, the local impact and local neighborhood under field conditions. In this study, root exudates of 10 common grassland species were analyzed, each five of forbs and grasses, in the German Biodiversity Exploratories using a combined phytometer and untargeted liquid chromatography-mass spectrometry (LC-MS) approach. Redundancy analysis and hierarchical clustering revealed a large set of semi-polar metabolites common to all species in addition to species-specific metabolites. Chemical richness and exudate composition revealed that forbs, such as Plantago lanceolata and Galium species, exuded more species-specific metabolites than grasses. Grasses instead were primarily affected by environmental conditions. In both forbs and grasses, plant functional traits had only a minor impact on plant root exudation patterns. Overall, our results demonstrate the feasibility of obtaining and untargeted profiling of semi-polar metabolites under field condition and allow a deeper view in the exudation of plants in a natural grassland community.

4.
J Am Chem Soc ; 141(20): 8264-8276, 2019 May 22.
Article in English | MEDLINE | ID: mdl-31030510

ABSTRACT

A series of neutral molybdenum imido alkylidene N-heterocyclic carbene (NHC) bistriflate and monotriflate monoalkoxide complexes as well as cationic molybdenum imido alkylidene triflate complexes have been subjected to NMR spectroscopic, X-ray crystallographic, and reaction kinetic measurements in order to gain a comprehensive understanding about the underlying mechanism in olefin metathesis of this new type of catalysts. On the basis of experimental evidence and on DFT calculations (BP86/def2-TZVP/D3/cosmo) for the entire mechanism, olefinic substrates coordinate trans to the NHC of neutral 16-electron complexes via an associative mechanism, followed by dissociation of an anionic ligand (e.g., triflate) and formation of an intermediary molybdacyclobutane trans to the NHC. Formation of a cationic complex is crucial in order to become olefin metathesis active. Variations in the NHC, the imido, the alkoxide, and the noncoordinating anion revealed their influence on reactivity. The reaction of neutral 16-electron complexes with 2-methoxystyrene is faster for catalysts bearing one triflate and one fluorinated alkoxide than for catalysts bearing two triflate ligands. This is also reflected by the Gibbs free energy values for the transition states, Δ G‡303, which are significantly lower for catalysts bearing only one triflate than for the corresponding bistriflate complexes. Reaction of a solvent-stabilized cationic molybdenum imido alkylidene N-heterocyclic carbene (NHC) monotriflate complex with 2-methoxystyrene proceeded via an associative mechanism too. Reaction rates of both solvent-free and solvent-stabilized cationic Mo imido alkylidene NHC catalysts with 2-methoxystyrene are controlled by the cross-metathesis step but not by adduct formation.

5.
PLoS One ; 14(3): e0213965, 2019.
Article in English | MEDLINE | ID: mdl-30865711

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0204128.].

6.
Front Microbiol ; 9: 2711, 2018.
Article in English | MEDLINE | ID: mdl-30515138

ABSTRACT

The rhizosphere encompasses the soil surrounding the surface of plants' fine roots. Accordingly, the microbiome present is influenced by both soil type and plant species. Furthermore, soil microbial communities respond to land-use intensity due to the effects on soil conditions and plant performance. However, there is limited knowledge about the impact of grassland management practices under field conditions on the composition of both bacteria and fungi in the rhizosphere of different plant functional groups. In spring 2014 we planted four phytometer species, two forbs (Plantago lanceolata, Achillea millefolium) and two grasses (Dactylis glomerata, Arrhenatherum elatius) into 13 permanent experimental grassland plots, differing in management. After 6 months, rhizosphere and bulk soil associated with the phytometer plants were sampled, microbial genomic DNA was extracted and bacterial 16S and fungal ITS rDNA were sequenced using Illumina MiSeq. Our study revealed that the rhizosphere microbial community was more diverse than the bulk soil community. There were no differences in microbial community composition between the two plant functional groups, but a clear impact of root traits and edaphic conditions. Land-use intensity strongly affected plant productivity, neighboring plant richness and edaphic conditions, especially soil C/N ratio, which in turn had a strong influence on root traits and thereby explained to large extent microbial community composition. Rhizosphere microbes were mainly affected by abiotic factors, in particular by land-use intensity, while plant functional type had only subordinate effects. Our study provides novel insights into the assembly of rhizosphere bacterial and fungal communities in response to land-use intensity and plant functional groups in managed grassland ecosystems.

7.
PLoS One ; 13(10): e0204128, 2018.
Article in English | MEDLINE | ID: mdl-30281675

ABSTRACT

Primary and secondary metabolites exuded by plant roots have mainly been studied under laboratory conditions, while knowledge of root exudate patterns of plants growing in natural communities is very limited. Focusing on ten common European grassland plant species, we asked to which degree exuded metabolite compositions are specific to species or growth forms (forbs and grasses), depend on environments and local neighbourhoods, and reflect traditional plant functional traits. Root exudates were collected under field conditions and analysed using a non-targeted gas chromatography coupled mass spectrometry (GC-MS) approach. In total, we annotated 153 compounds of which 36 were identified by structure and name as metabolites mainly derived from the primary metabolism. Here we show by using variance partitioning, that the composition of exuded polar metabolites was mostly explained by plot identity, followed by plant species identity while plant species composition of the local neighbourhood played no role. Total and root dry biomass explained the largest proportion of variance in exudate composition, with additional variance explained by traditional plant traits. Although the exudate composition was quite similar between the two growth forms, we found some metabolites that occurred only in one of the two growth forms. Our study demonstrated the feasibility of measuring polar exudates under non-sterile field conditions by mass spectrometry, which opens new avenues of research for functional plant ecology.


Subject(s)
Plant Exudates/chemistry , Plant Roots/metabolism , Plants/metabolism , Poaceae/metabolism , Gas Chromatography-Mass Spectrometry , Grassland , Seedlings/growth & development , Seeds/growth & development , Water/chemistry
8.
Chemistry ; 24(48): 12652-12659, 2018 Aug 27.
Article in English | MEDLINE | ID: mdl-29888813

ABSTRACT

The pentacoordinated, 16-valence electron (VE) Mo imido alkylidene N-heterocyclic carbene (NHC) complexes I1-I5 and the hexacoordinated 18-VE Mo imido alkylidene NHC complexes 1-4, 8, 10 and 12 containing a chelating ligand have been prepared and used as thermally latent catalysts in the ring-opening metathesis polymerization (ROMP) of dicyclopentadiene (DCPD). Both 10 and 12 are the first Mo imido alkylidene complexes with a chelating alkylidene featuring a carboxylate group. Complexes I1-I3 and I5 as well as 1-4 proved to be fully thermally latent in the presence of DCPD. With the changes in both the electronic and steric situation at the imido ligand provided by these pre-catalysts, different temperatures of the onset of polymerization (Tonset =65-140 °C) and for the exothermic maximum of the curing curve (Texo,max =98-183 °C) of DCPD were achieved. Also, the degree of crosslinking was successfully varied as indicated by swelling experiments in toluene, which revealed degrees of swelling between 0 and 50 %. While the introduction of a chelating alkylidene increases Tonset , the introduction of more electron-donating anionic ligands (tert-butoxide, phenoxide) resulted in a drastic reduction in Tonset , underlining the high flexibility of these systems. The hexacoordinated high-oxidation state molybdenum imido alkylidene NHC complexes 2, 3 and 4 were stable under air for at least twelve hours in the solid state.

9.
Ecol Evol ; 7(21): 8958-8965, 2017 11.
Article in English | MEDLINE | ID: mdl-29177035

ABSTRACT

Plant functional traits are widely used to predict community productivity. However, they are rarely used to predict individual plant performance in grasslands. To assess the relative importance of traits compared to environment, we planted seedlings of 20 common grassland species as phytometers into existing grassland communities varying in land-use intensity. After 1 year, we dug out the plants and assessed root, leaf, and aboveground biomass, to measure plant performance. Furthermore, we determined the functional traits of the phytometers and of all plants growing in their local neighborhood. Neighborhood impacts were analyzed by calculating community-weighted means (CWM) and functional diversity (FD) of every measured trait. We used model selection to identify the most important predictors of individual plant performance, which included phytometer traits, environmental conditions (climate, soil conditions, and land-use intensity), as well as CWM and FD of the local neighborhood. Using variance partitioning, we found that most variation in individual plant performance was explained by the traits of the individual phytometer plant, ranging between 19.30% and 44.73% for leaf and aboveground dry mass, respectively. Similarly, in a linear mixed effects model across all species, performance was best predicted by phytometer traits. Among all environmental variables, only including land-use intensity improved model quality. The models were also improved by functional characteristics of the local neighborhood, such as CWM of leaf dry matter content, root calcium concentration, and root mass per volume as well as FD of leaf potassium and root magnesium concentration and shoot dry matter content. However, their relative effect sizes were much lower than those of the phytometer traits. Our study clearly showed that under realistic field conditions, the performance of an individual plant can be predicted satisfyingly by its functional traits, presumably because traits also capture most of environmental and neighborhood conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...