Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
J Phys Chem Lett ; 8(22): 5462-5471, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-29064705

ABSTRACT

We present an experimental study on the near-field light-matter interaction by tip-enhanced Raman scattering (TERS) with polarized light in three different materials: germanium-doped gallium nitride (GaN), graphene, and carbon nanotubes. We investigate the dependence of the TERS signal on the incoming light polarization and on the sample carrier concentration, as well as the Raman selection rules in the near-field. We explain the experimental data with a tentative quantum mechanical interpretation, which takes into account the role of plasmon polaritons, and the associated evanescent field. The driving force for the breakdown of the classical Raman selection rules in TERS is caused by photon tunneling through the perturbation of the evanescent field, with the consequent polariton annihilation. Predictions based on this quantum mechanical approach are in good agreement with the experimental data, which are shown to be independent of incoming light polarization, leading to new Raman selection rules for TERS.

3.
ACS Nano ; 11(11): 11206-11216, 2017 11 28.
Article in English | MEDLINE | ID: mdl-28992415

ABSTRACT

Few- and single-layer MoS2 host substantial densities of defects. They are thought to influence the doping level, the crystal structure, and the binding of electron-hole pairs. We disentangle the concomitant spectroscopic expression of all three effects and identify to what extent they are intrinsic to the material or extrinsic to it, i.e., related to its local environment. We do so by using different sources of MoS2-a natural one and one prepared at high pressure and high temperature-and different substrates bringing varying amounts of charged impurities and by separating the contributions of internal strain and doping in Raman spectra. Photoluminescence unveils various optically active excitonic complexes. We discover a defect-bound state having a low binding energy of 20 meV that does not appear sensitive to strain and doping, unlike charged excitons. Conversely, the defect does not significantly dope or strain MoS2. Scanning tunneling microscopy and density functional theory simulations point to substitutional atoms, presumably individual nitrogen atoms at the sulfur site. Our work shows the way to a systematic understanding of the effect of external and internal fields on the optical properties of two-dimensional materials.

4.
Phys Rev Lett ; 113(18): 187401, 2014 Oct 31.
Article in English | MEDLINE | ID: mdl-25396395

ABSTRACT

By computing the double-resonant Raman scattering cross section completely from first principles and including the electron-electron interaction at the GW level, we unravel the dominant contributions for the double-resonant 2D mode in bilayer graphene. We show that, in contrast to previous works, the so-called inner processes are dominant and that the 2D-mode line shape is described by three dominant resonances around the K point. We show that the splitting of the transversal optical (TO) phonon branch in the Γ-K direction, as large as 12 cm(-1) in the GW approximation, is of great importance for a thorough description of the 2D-mode line shape. Finally, we present a method to extract the TO phonon splitting and the splitting of the electronic bands from experimental data.

SELECTION OF CITATIONS
SEARCH DETAIL
...