Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(18)2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37765663

ABSTRACT

An in situ gear test rig has been developed at the Institute of Polymer Technology (LKT) to characterize the deformation of plastic gears during operation. It analyses timing differences between following index pulses of rotary encoders on the input and output shaft. This measurement principle enables the continuous measurement of the elastic tooth deformation and permanent deformations and wear at operating speed by switching between a high and low torque. Gear tests using a steel-polybutylene terephthalate (PBT) gear set were performed at different rotational speeds and tooth temperatures to analyze the tooth deformation during operation. The results were compared to the calculated deformation according to gear design guideline VDI 2736. Moreover, the results of the gear tests were correlated with the results of a dynamomechanical analysis (DMA). Both, the DMA and the in situ gear tests show that the effect of temperature on deformation is much higher than the effect of frequency or rotational speed. However, the experimentally measured tooth deformation is significantly higher (up to 50%) than the calculated at lower speed. Thus, the check calculation according to VDI 2736 underestimates the actual tooth deformation at lower speeds. Therefore, the guideline should be adjusted in the future.

2.
Polymers (Basel) ; 15(7)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37050346

ABSTRACT

A new steel-plastic gear set testing methodology has been developed at the Institute of Polymer Technology (LKT). The in situ gear test rig analyses the timing differences between the index pulses of rotary encoders on the input and output shaft. This measurement principle enables the continuous measurement of the elastic tooth deflection on the one hand and permanent deformations and wear on the other hand by switching between a high loading torque and a low measuring torque. However, the elastic tooth deflection measurement using this principle has not yet been validated. Therefore, in situ gear tests using polybutylene terephthalate (PBT) gears were performed to evaluate the elastic tooth deflection of the plastic gear during operation. The results were compared to the results of pulsator tests. The comparison shows a very good correlation between the results of the newly developed in situ gear test rig and the well-established pulsator test rig. However, it has been shown that the test rig design creates a measuring offset due to angular displacements of the shafts due to torsion of test rig components.

3.
Polymers (Basel) ; 14(23)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36501633

ABSTRACT

The wear behaviour of PBT-steel gear sets under temporarily changed load has been investigated using an in situ gear test rig developed at the LKT. The in situ test method is based on analysing the timing differences between the index pulses of rotary encoders on the input and output shaft of the test rig. The loading torque was varied between two levels and compared to the permanently applied equivalent average load in terms of the resulting tooth flank wear. Moreover, the number of load changes has been varied to analyse the influence of load changes on the gear wear. The results show that the applied load spectrum determines the resulting tooth flank wear even if the average applied load is the same. Moreover, it could be shown that the sequence of the applied load, i.e., the load history, plays an important role, since the applied load and the duration of the applied load within the run-in-stage disproportionately affect the wear behaviour over time.

4.
Polymers (Basel) ; 13(19)2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34641144

ABSTRACT

The power degradation and failure of photovoltaic (PV) modules can be caused by changes in the mechanical properties of the polymeric components during the module lifetime. This paper introduces instrumented nanoindentation as a method to investigate the mechanical properties of module materials such as polymeric encapsulants. To this end, nanoindentation tests were carried out on ethylene vinyl acetate (EVA) surfaces, which have been separated from the glass panel. Two types of time-dependent indentation cycle modes, the time domain (creep mode) and frequency domain (dynamic mode) were performed to determine the viscoelastic behavior. For each mode, a corresponding model was applied to calculate the main mechanical properties. The general capability of nanoindentation as cross-linking determination method is investigated with the methodological advantages over bulk mechanical characterization methods. A large number of Glass/EVA/Backsheet laminates were built using different lamination conditions resulting in different degrees of curing. Both indentation modes indicate good modulus sensitivity for following the EVA crosslinking in its early stages but could not reliably differentiate between samples with higher EVA branching. Additional dynamic mechanical analysis (DMA) characterization was used as an established method to validate the indentation measurements. Both nanoindentation and DMA tensile mode produce similar quantitative viscoelastic responses, in the form of the damping factor parameter, demonstrated for three different frequencies at room temperature. A statistical study of the data reveals the advantages for the investigation of multilayer PV laminates by using nanoindenation as a surface method while also being applicable to field aged modules.

5.
Dalton Trans ; 49(39): 13818-13828, 2020 Oct 12.
Article in English | MEDLINE | ID: mdl-33001083

ABSTRACT

The synthesis of two different types of bis(N,N',N'-substituted 1,2-ethanediamine)s, bridged either through the secondary (type 1) or tertiary (type 2) amine groups is reported. Selected protio-ligands have been applied in subsequent metallation reactions using aluminium, magnesium, tin, and zinc sources allowing to isolate five mononuclear and eight dinuclear complexes. All complexes have been fully characterized and their solid-state structures have been studied by means of single-crystal X-ray diffraction analysis. Nine of the 13 complexes carry reactive alkyl, amide or hydride groups, which indicates their potential as catalysts or supports for (transition) metals.

SELECTION OF CITATIONS
SEARCH DETAIL
...