Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
2.
Plant J ; 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37067011

ABSTRACT

The nucleus is a central organelle of eukaryotic cells undergoing dynamic structural changes during cellular fundamental processes such as proliferation and differentiation. These changes rely on the integration of developmental and stress signals at the nuclear envelope (NE), orchestrating responses at the nucleo-cytoplasmic interface for efficient genomic functions such as DNA transcription, replication and repair. While in animals, correlation has already been established between NE dynamics and chromatin remodeling using last-generation tools and cutting-edge technologies, this topic is just emerging in plants, especially in response to mechanical cues. This review summarizes recent data obtained in this field with more emphasis on the mechanical stress response. It also highlights similarities/differences between animal and plant cells at multiples scales, from the structural organization of the nucleo-cytoplasmic continuum to the functional impacts of NE dynamics.

3.
Article in English | MEDLINE | ID: mdl-36209771

ABSTRACT

The NMDA antagonist ketamine demonstrated a fast antidepressant activity in treatment-resistant depression. Pre-clinical studies suggest that de novo synthesis of the brain-derived neurotrophic factor (BDNF) in the PFC might be involved in the rapid antidepressant action of ketamine. Applying a genetic model of impaired glutamate release, this study aims to further identify the molecular mechanisms that could modulate antidepressant action and resistance to treatment. To that end, mice knocked-down for the vesicular glutamate transporter 1 (VGLUT1+/-) were used. We analyzed anhedonia and helpless behavior as well as the expression of the proteins linked to glutamate transmission in the PFC of mice treated with ketamine or the reference antidepressant reboxetine. Moreover, we analyzed the acute effects of ketamine in VGLUT1+/- mice pretreated with chronic reboxetine or those that received a PFC rescue expression of VGLUT1. Chronic reboxetine rescued the depressive-like phenotype of the VGLUT1+/- mice. In addition, it enhanced the expression of the proteins linked to the AMPA signaling pathway as well as the immature form of BDNF (pro-BDNF). Unlike WT mice, ketamine had no effect on anhedonia or pro-BDNF expression in VGLUT1+/- mice; it also failed to decrease phosphorylated eukaryote elongation factor 2 (p-eEF2). Nevertheless, we found that reboxetine administered as pretreatment or PFC overexpression of VGLUT1 did rescue the antidepressant-like activity of acute ketamine in the mice. Our results strongly suggest that not only do PFC VGLUT1 levels modulate the rapid-antidepressant action of ketamine, but also highlight a possible mechanism for antidepressant resistance in some patients.


Subject(s)
Ketamine , Vesicular Glutamate Transport Protein 1 , Animals , Mice , Anhedonia , Antidepressive Agents/therapeutic use , Brain-Derived Neurotrophic Factor/metabolism , Depression/metabolism , Disease Models, Animal , Glutamic Acid/metabolism , Ketamine/pharmacology , Neurons/metabolism , Prefrontal Cortex/metabolism , Reboxetine/pharmacology , Vesicular Glutamate Transport Protein 1/metabolism
4.
Front Mol Neurosci ; 15: 991732, 2022.
Article in English | MEDLINE | ID: mdl-36176961

ABSTRACT

Striatal cholinergic interneurons (CINs) use acetylcholine (ACh) and glutamate (Glut) to regulate the striatal network since they express vesicular transporters for ACh (VAChT) and Glut (VGLUT3). However, whether ACh and Glut are released simultaneously and/or independently from cholinergic varicosities is an open question. The answer to that question requires the multichannel detection of vesicular transporters at the level of single synaptic vesicle (SV). Here, we used super-resolution STimulated Emission Depletion microscopy (STED) to characterize and quantify the distribution of VAChT and VGLUT3 in CINs SVs. Nearest-neighbor distances analysis between VAChT and VGLUT3-immunofluorescent spots revealed that 34% of CINs SVs contain both VAChT and VGLUT3. In addition, 40% of SVs expressed only VAChT while 26% of SVs contain only VGLUT3. These results suggest that SVs from CINs have the potential to store simultaneously or independently ACh and/or Glut. Overall, these morphological findings support the notion that CINs varicosities can signal with either ACh or Glut or both with an unexpected level of complexity.

5.
Nat Commun ; 13(1): 3102, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35660742

ABSTRACT

Dopamine transmission is involved in reward processing and motor control, and its impairment plays a central role in numerous neurological disorders. Despite its strong pathophysiological relevance, the molecular and structural organization of the dopaminergic synapse remains to be established. Here, we used targeted labelling and fluorescence activated sorting to purify striatal dopaminergic synaptosomes. We provide the proteome of dopaminergic synapses with 57 proteins specifically enriched. Beyond canonical markers of dopamine neurotransmission such as dopamine biosynthetic enzymes and cognate receptors, we validated 6 proteins not previously described as enriched. Moreover, our data reveal the adhesion of dopaminergic synapses to glutamatergic, GABAergic or cholinergic synapses in structures we named "dopamine hub synapses". At glutamatergic synapses, pre- and postsynaptic markers are significantly increased upon association with dopamine synapses. Dopamine hub synapses may thus support local dopaminergic signalling, complementing volume transmission thought to be the major mechanism by which monoamines modulate network activity.


Subject(s)
Dopamine , Synapses , Animals , Corpus Striatum/physiology , Dopamine/metabolism , Mice , Reward , Synapses/metabolism , Synaptic Transmission/physiology
6.
Cell Rep ; 38(2): 110208, 2022 01 11.
Article in English | MEDLINE | ID: mdl-35021090

ABSTRACT

Midbrain dopaminergic (mDA) neurons exhibit extensive dendritic and axonal arborizations, but local protein synthesis is not characterized in these neurons. Here, we investigate messenger RNA (mRNA) localization and translation in mDA neuronal axons and dendrites, both of which release dopamine (DA). Using highly sensitive ribosome-bound RNA sequencing and imaging approaches, we find no evidence for mRNA translation in mDA axons. In contrast, mDA neuronal dendrites in the substantia nigra pars reticulata (SNr) contain ribosomes and mRNAs encoding the major components of DA synthesis, release, and reuptake machinery. Surprisingly, we also observe dendritic localization of mRNAs encoding synaptic vesicle-related proteins, including those involved in exocytic fusion. Our results are consistent with a role for local translation in the regulation of DA release from dendrites, but not from axons. Our translatome data define a molecular signature of sparse mDA neurons in the SNr, including the enrichment of Atp2a3/SERCA3, an atypical ER calcium pump.


Subject(s)
Dopaminergic Neurons/metabolism , Protein Biosynthesis/physiology , RNA, Messenger/metabolism , Animals , Axons/metabolism , Dendrites/metabolism , Dopamine/metabolism , Female , Male , Mesencephalon/physiology , Mice , Mice, Inbred C57BL , Neuronal Plasticity/physiology , Protein Biosynthesis/genetics , RNA, Messenger/genetics , Ribosomes/metabolism , Sequence Analysis, RNA/methods , Substantia Nigra/metabolism
7.
Cell Rep ; 36(10): 109678, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34496238

ABSTRACT

The endosomal recycling system dynamically tunes synaptic strength, which underlies synaptic plasticity. Exocytosis is involved in the expression of long-term potentiation (LTP), as postsynaptic cleavage of the SNARE (soluble NSF-attachment protein receptor) protein VAMP2 by tetanus toxin blocks LTP. Moreover, induction of LTP increases the exocytosis of transferrin receptors (TfRs) and markers of recycling endosomes (REs), as well as post-synaptic AMPA type receptors (AMPARs). However, the interplay between AMPAR and TfR exocytosis remains unclear. Here, we identify VAMP4 as the vesicular SNARE that mediates most dendritic RE exocytosis. In contrast, VAMP2 plays a minor role in RE exocytosis. LTP induction increases the exocytosis of both VAMP2- and VAMP4-labeled organelles. Knock down (KD) of VAMP4 decreases TfR recycling but increases AMPAR recycling. Moreover, VAMP4 KD increases AMPAR-mediated synaptic transmission, which consequently occludes LTP expression. The opposing changes in AMPAR and TfR recycling upon VAMP4 KD reveal their sorting into separate endosomal populations.


Subject(s)
Dendrites/metabolism , Neuronal Plasticity/physiology , Neurons/metabolism , R-SNARE Proteins/metabolism , Vesicle-Associated Membrane Protein 2/metabolism , Animals , Endosomes/metabolism , Excitatory Postsynaptic Potentials/physiology , Exocytosis/physiology , Female , Male , Rats, Sprague-Dawley , Synapses/metabolism , Synaptic Transmission/physiology
8.
Bio Protoc ; 11(6): e3962, 2021 Mar 20.
Article in English | MEDLINE | ID: mdl-33855120

ABSTRACT

Synaptic vesicles (SVs) are clustered in the presynaptic terminals and consistently trafficking along axons. Based on their release features, SVs are classified into different "pools". Imaging of SVs that are traveling among multiple presynaptic terminals has helped define a new pool named "SV super-pool". Here we describe a Fluorescent Recovery After Photobleaching (FRAP) approach to elucidate the relationship between SVs from the super-pool with SV clusters at presynaptic terminals. This method is powerful to investigate SV mobility regulation mechanisms.

9.
Front Plant Sci ; 12: 804928, 2021.
Article in English | MEDLINE | ID: mdl-35154196

ABSTRACT

The maintenance of genetic information is important in eukaryotes notably through mechanisms occurring at the nuclear periphery where inner nuclear membrane proteins and nuclear pore-associated components are key factors regulating the DNA damage response (DDR). However, this aspect of DDR regulation is still poorly documented in plants. We addressed here how genomic stability is impaired in the gamma-tubulin complex component 3-interacting protein (gip1gip2) double mutants showing defective nuclear shaping. Using neutral comet assays for DNA double-strand breaks (DSBs) detection, we showed that GIP1 and GIP2 act redundantly to maintain genome stability. At the cellular level, γ-H2AX foci in gip1gip2 were more abundant and heterogeneous in their size compared to wild-type (WT) in root meristematic nuclei, indicative of constitutive DNA damage. This was linked to a constitutive activation of the DDR in the gip1gip2 mutant, with more emphasis on the homologous recombination (HR) repair pathway. In addition, we noticed the presence of numerous RAD51 foci which did not colocalize with γ-H2AX foci. The expression of GIP1-GFP in the double mutant rescued the cellular response to DNA damage, leading to the systematic colocalization of RAD51 and γ-H2AX foci. Interestingly, a significant proportion of RAD51 foci colocalized with GIP1-GFP at the nuclear periphery. Altogether, our data suggest that GIPs may partly contribute to the spatio-temporal recruitment of RAD51 at the nuclear periphery.

11.
EMBO J ; 38(23): e102345, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31701556

ABSTRACT

In Alzheimer's disease, BACE1 protease initiates the amyloidogenic processing of amyloid precursor protein (APP) that eventually results in synthesis of ß-amyloid (Aß) peptide. Aß deposition in turn causes accumulation of BACE1 in plaque-associated dystrophic neurites, thereby potentiating progressive Aß deposition once initiated. Since systemic pharmacological BACE inhibition causes adverse effects in humans, it is important to identify strategies that specifically normalize overt BACE1 activity around plaques. The microtubule-associated protein tau regulates axonal transport of proteins, and tau deletion rescues Aß-induced transport deficits in vitro. In the current study, long-term in vivo two-photon microscopy and immunohistochemistry were performed in tau-deficient APPPS1 mice. Tau deletion reduced plaque-associated axonal pathology and BACE1 accumulation without affecting physiological BACE1 expression distant from plaques. Thereby, tau deletion effectively decelerated formation of new plaques and reduced plaque compactness. The data revealed that tau reinforces Aß deposition, presumably by contributing to accumulation of BACE1 in plaque-associated dystrophies. Targeting tau-dependent mechanisms could become a suitable strategy to specifically reduce overt BACE1 activity around plaques, thereby avoiding adverse effects of systemic BACE inhibition.


Subject(s)
Alzheimer Disease/prevention & control , Amyloid Precursor Protein Secretases/physiology , Aspartic Acid Endopeptidases/antagonists & inhibitors , Gene Expression Regulation , Plaque, Amyloid/prevention & control , tau Proteins/antagonists & inhibitors , Alzheimer Disease/etiology , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Animals , Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism , Brain/metabolism , Brain/pathology , Disease Models, Animal , Female , Humans , Male , Mice , Mice, Transgenic , Plaque, Amyloid/etiology , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology
12.
Elife ; 82019 10 30.
Article in English | MEDLINE | ID: mdl-31663854

ABSTRACT

Glutamate secretion at excitatory synapses is tightly regulated to allow for the precise tuning of synaptic strength. Vesicular Glutamate Transporters (VGLUT) accumulate glutamate into synaptic vesicles (SV) and thereby regulate quantal size. Further, the number of release sites and the release probability of SVs maybe regulated by the organization of active-zone proteins and SV clusters. In the present work, we uncover a mechanism mediating an increased SV clustering through the interaction of VGLUT1 second proline-rich domain, endophilinA1 and intersectin1. This strengthening of SV clusters results in a combined reduction of axonal SV super-pool size and miniature excitatory events frequency. Our findings support a model in which clustered vesicles are held together through multiple weak interactions between Src homology three and proline-rich domains of synaptic proteins. In mammals, VGLUT1 gained a proline-rich sequence that recruits endophilinA1 and turns the transporter into a regulator of SV organization and spontaneous release.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Glutamates/metabolism , Synaptic Vesicles/metabolism , Vesicular Glutamate Transport Protein 1/metabolism , Animals , Biological Transport , Humans , Mice , Mice, Knockout , Rats , Vesicular Glutamate Transport Protein 1/deficiency
13.
Acta Neuropathol ; 138(6): 971-986, 2019 12.
Article in English | MEDLINE | ID: mdl-31451907

ABSTRACT

Cognitive decline and dementia in neurodegenerative diseases are associated with synapse dysfunction and loss, which may precede neuron loss by several years. While misfolded and aggregated α-synuclein is recognized in the disease progression of synucleinopathies, the nature of glutamatergic synapse dysfunction and loss remains incompletely understood. Using fluorescence-activated synaptosome sorting (FASS), we enriched excitatory glutamatergic synaptosomes from mice overexpressing human alpha-synuclein (h-αS) and wild-type littermates to unprecedented purity. Subsequent label-free proteomic quantification revealed a set of proteins differentially expressed upon human alpha-synuclein overexpression. These include overrepresented proteins involved in the synaptic vesicle cycle, ER-Golgi trafficking, metabolism and cytoskeleton. Unexpectedly, we found and validated a steep reduction of eukaryotic translation elongation factor 1 alpha (eEF1A1) levels in excitatory synapses at early stages of h-αS mouse model pathology. While eEF1A1 reduction correlated with the loss of postsynapses, its immunoreactivity was found on both sides of excitatory synapses. Moreover, we observed a reduction in eEF1A1 immunoreactivity in the cingulate gyrus neuropil of patients with Lewy body disease along with a reduction in PSD95 levels. Altogether, our results suggest a link between structural impairments underlying cognitive decline in neurodegenerative disorders and local synaptic defects. eEF1A1 may therefore represent a limiting factor to synapse maintenance.


Subject(s)
Peptide Elongation Factor 1/metabolism , Synapses/metabolism , Synucleinopathies/metabolism , Animals , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Computational Biology , Disease Models, Animal , Disks Large Homolog 4 Protein/metabolism , Female , Male , Mice, Transgenic , Neuropil/metabolism , Neuropil/pathology , Proteome , Synapses/pathology , Synucleinopathies/pathology , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
14.
Science ; 364(6441)2019 05 17.
Article in English | MEDLINE | ID: mdl-31097639

ABSTRACT

There is ample evidence for localization of messenger RNAs (mRNAs) and protein synthesis in neuronal dendrites; however, demonstrations of these processes in presynaptic terminals are limited. We used expansion microscopy to resolve pre- and postsynaptic compartments in rodent neurons. Most presynaptic terminals in the hippocampus and forebrain contained mRNA and ribosomes. We sorted fluorescently labeled mouse brain synaptosomes and then sequenced hundreds of mRNA species present within excitatory boutons. After brief metabolic labeling, >30% of all presynaptic terminals exhibited a signal, providing evidence for ongoing protein synthesis. We tested different classic plasticity paradigms and observed distinct patterns of rapid pre- and/or postsynaptic translation. Thus, presynaptic terminals are translationally competent, and local protein synthesis is differentially recruited to drive compartment-specific phenotypes that underlie different forms of plasticity.


Subject(s)
Neurons/metabolism , Protein Biosynthesis , Synapses/metabolism , Animals , Cells, Cultured , Cerebral Cortex/cytology , Cerebral Cortex/metabolism , Dendrites/metabolism , Mice , Mice, Mutant Strains , Neuronal Plasticity , Pituitary Gland/cytology , Pituitary Gland/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Inbred Strains , Ribosomes/metabolism , Vesicular Glutamate Transport Protein 1/genetics
15.
Front Cell Neurosci ; 12: 450, 2018.
Article in English | MEDLINE | ID: mdl-30555302

ABSTRACT

Our aim was to examine the dynamics of the muscarinic m2 receptor (m2R), a G-protein coupled receptor (GPCR), after agonist activation in living hippocampal neurons, and especially clathrin dependency endocytosis. We have previously shown that the m2R undergoes agonist-induced internalization in vivo. However, the nature of the endocytotic pathway used by m2R after activation is still unknown in living neurons. Using live cell imaging and quantitative analyses, we have monitored the effect of stimulation on the fate of the membrane-bound m2R and on its redistribution in intraneuronal compartments. Shortly (6 min) after activation, m2R is internalized into clathrin immunopositive structures. Furthermore, after clathrin-dependent endocytosis, m2R associates with early and late endosomes and with subcellular organelles involved in degradation. Together, these results provide, for the first time, a description of m2R trafficking in living neurons and prove that m2R undergoes clathrin-dependent endocytosis before being degraded.

16.
Plant Cell Rep ; 37(12): 1625-1637, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30099611

ABSTRACT

KEY MESSAGE: Rice rss1 complementation assays show that wheat TdRL1 and RSS1 are true functional homologs. TdRL1 over-expression in Arabidopsis conferred salt stress tolerance and alleviated ROS accumulation. Plants have developed highly flexible adaptive responses to their ever-changing environment, which are often mediated by intrinsically disordered proteins (IDP). RICE SALT SENSITIVE 1 and Triticum durum RSS1-Like 1 protein (TdRL1) are both IDPs involved in abiotic stress responses, and possess conserved D and DEN-Boxes known to be required for post-translational degradation by the APC/Ccdc20 cyclosome. To further understand their function, we performed a computational analysis to compare RSS1 and TdRL1 co-expression networks revealing common gene ontologies, among which those related to cell cycle progression and regulation of microtubule (MT) networks were over-represented. When over-expressed in Arabidopsis, TdRL1::GFP was present in dividing cells and more visible in cortical and endodermal cells of the Root Apical Meristem (RAM). Incubation with the proteasome inhibitor MG132 stabilized TdRL1::GFP expression in RAM cells showing a post-translational regulation. Moreover, immuno-cytochemical analyses of transgenic roots showed that TdRL1 was present in the cytoplasm and within the microtubular spindle of mitotic cells, while, in interphasic cells, it was rather restricted to the cytoplasm with a spotty pattern at the nuclear periphery. Interestingly in cells subjected to stress, TdRL1 was partly relocated into the nucleus. Moreover, TdRL1 transgenic lines showed increased germination rates under salt stress conditions as compared to wild type. This enhanced salt stress tolerance was associated to an alleviation of oxidative damage. Finally, when expressed in the rice rss1 mutant, TdRL1 suppressed its dwarf phenotype upon salt stress, confirming that both proteins are true functional homologs required for salt stress tolerance in cereals.


Subject(s)
Oryza/metabolism , Plant Proteins/metabolism , Salt Tolerance , Sequence Homology, Amino Acid , Stress, Physiological , Triticum/metabolism , Arabidopsis/genetics , Cell Cycle/genetics , Gene Expression Regulation, Plant/drug effects , Gene Ontology , Genes, Plant , Genetic Complementation Test , Germination/drug effects , Green Fluorescent Proteins/metabolism , Leupeptins/pharmacology , Mutation/genetics , Oryza/genetics , Oxidative Stress/drug effects , Phenotype , Plant Roots/cytology , Plant Roots/drug effects , Plant Roots/metabolism , Plants, Genetically Modified , Protein Stability/drug effects , Salt Tolerance/drug effects , Seeds/drug effects , Seeds/growth & development , Sodium Chloride/pharmacology , Stress, Physiological/drug effects , Triticum/genetics
17.
Acta Neuropathol ; 135(5): 695-710, 2018 05.
Article in English | MEDLINE | ID: mdl-29327084

ABSTRACT

BACE1 is the rate-limiting protease in the production of synaptotoxic ß-amyloid (Aß) species and hence one of the prime drug targets for potential therapy of Alzheimer's disease (AD). However, so far pharmacological BACE1 inhibition failed to rescue the cognitive decline in mild-to-moderate AD patients, which indicates that treatment at the symptomatic stage might be too late. In the current study, chronic in vivo two-photon microscopy was performed in a transgenic AD model to monitor the impact of pharmacological BACE1 inhibition on early ß-amyloid pathology. The longitudinal approach allowed to assess the kinetics of individual plaques and associated presynaptic pathology, before and throughout treatment. BACE1 inhibition could not halt but slow down progressive ß-amyloid deposition and associated synaptic pathology. Notably, the data revealed that the initial process of plaque formation, rather than the subsequent phase of gradual plaque growth, is most sensitive to BACE1 inhibition. This finding of particular susceptibility of plaque formation has profound implications to achieve optimal therapeutic efficacy for the prospective treatment of AD.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Aspartic Acid Endopeptidases/antagonists & inhibitors , Brain/drug effects , Neuroprotective Agents/pharmacology , Peptide Fragments/metabolism , Picolinic Acids/pharmacology , Thiazines/pharmacology , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Aspartic Acid Endopeptidases/metabolism , Brain/metabolism , Brain/pathology , Disease Models, Animal , Disease Progression , Enzyme Inhibitors/pharmacology , Female , Humans , Male , Mice, Transgenic , Plaque, Amyloid/drug therapy , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , Presenilin-1/genetics , Presenilin-1/metabolism , Vesicular Glutamate Transport Protein 1/genetics , Vesicular Glutamate Transport Protein 1/metabolism
18.
Sci Rep ; 8(1): 938, 2018 01 17.
Article in English | MEDLINE | ID: mdl-29343737

ABSTRACT

Synaptic loss, plaques and neurofibrillary tangles are viewed as hallmarks of Alzheimer's disease (AD). This study investigated synaptic markers in neocortical Brodmann area 9 (BA9) samples from 171 subjects with and without AD at different levels of cognitive impairment. The expression levels of vesicular glutamate transporters (VGLUT1&2), glutamate uptake site (EAAT2), post-synaptic density protein of 95 kD (PSD95), vesicular GABA/glycine transporter (VIAAT), somatostatin (som), synaptophysin and choline acetyl transferase (ChAT) were evaluated. VGLUT2 and EAAT2 were unaffected by dementia. The VGLUT1, PSD95, VIAAT, som, ChAT and synaptophysin expression levels significantly decreased as dementia progressed. The maximal decrease varied between 12% (synaptophysin) and 42% (som). VGLUT1 was more strongly correlated with dementia than all of the other markers (polyserial correlation = -0.41). Principal component analysis using these markers was unable to differentiate the CDR groups from one another. Therefore, the status of the major synaptic markers in BA9 does not seem to be linked to the cognitive status of AD patients. The findings of this study suggest that the loss of synaptic markers in BA9 is a late event that is only weakly related to AD dementia.


Subject(s)
Alzheimer Disease/metabolism , Biomarkers/metabolism , Cognition/physiology , Prefrontal Cortex/metabolism , Synapses/metabolism , Aged, 80 and over , Choline O-Acetyltransferase/metabolism , Female , Glutamic Acid/metabolism , Humans , Male , Neurons/metabolism , Synaptophysin/metabolism , Vesicular Glutamate Transport Protein 1/metabolism , Vesicular Inhibitory Amino Acid Transport Proteins/metabolism
19.
J Neurosci ; 37(46): 11114-11126, 2017 11 15.
Article in English | MEDLINE | ID: mdl-29030432

ABSTRACT

Classical and systems genetics have identified wide networks of genes associated with cognitive and neurodevelopmental diseases. In parallel to deciphering the role of each of these genes in neuronal or synaptic function, evaluating the response of neuronal and molecular networks to gene loss of function could reveal some pathophysiological mechanisms potentially accessible to nongenetic therapies. Loss of function of the Rho-GAP oligophrenin-1 is associated with cognitive impairments in both human and mouse. Upregulation of both PKA and ROCK has been reported in Ophn1-/y mice, but it remains unclear whether kinase hyperactivity contributes to the behavioral phenotypes. In this study, we thoroughly characterized a prominent perseveration phenotype displayed by Ophn1-deficient mice using a Y-maze spatial working memory (SWM) test. We report that Ophn1 deficiency in the mouse generated severe cognitive impairments, characterized by both a high occurrence of perseverative behaviors and a lack of deliberation during the SWM test. In vivo and in vitro pharmacological experiments suggest that PKA dysregulation in the mPFC underlies cognitive dysfunction in Ophn1-deficient mice, as assessed using a delayed spatial alternation task results. Functionally, mPFC neuronal networks appeared to be affected in a PKA-dependent manner, whereas hippocampal-PFC projections involved in SWM were not affected in Ophn1-/y mice. Thus, we propose that discrete gene mutations in intellectual disability might generate "secondary" pathophysiological mechanisms, which are prone to become pharmacological targets for curative strategies in adult patients.SIGNIFICANCE STATEMENT Here we report that Ophn1 deficiency generates severe impairments in performance at spatial working memory tests, characterized by a high occurrence of perseverative behaviors and a lack of decision making. This cognitive deficit is consecutive to PKA deregulation in the mPFC that prevents Ophn1 KO mice to exploit a correctly acquired rule. Functionally, mPFC neuronal networks appear to be affected in a PKA-dependent manner, whereas behaviorally important hippocampal projections were preserved by the mutation. Thus, we propose that discrete gene mutations in intellectual disability can generate "secondary" pathophysiological mechanisms prone to become pharmacological targets for curative strategies in adults.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Cytoskeletal Proteins/deficiency , GTPase-Activating Proteins/deficiency , Memory Disorders/metabolism , Memory, Short-Term/physiology , Nuclear Proteins/deficiency , Prefrontal Cortex/metabolism , Animals , Male , Maze Learning/physiology , Memory Disorders/physiopathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Net/metabolism , Nerve Net/physiopathology , Organ Culture Techniques , Prefrontal Cortex/physiopathology , Random Allocation
20.
Nucleus ; 8(1): 98-105, 2017 01 02.
Article in English | MEDLINE | ID: mdl-28033038

ABSTRACT

The control of genomic maintenance during S phase is crucial in eukaryotes. It involves the establishment of sister chromatid cohesion, ensuring faithful chromosome segregation, as well as proper DNA replication and repair to preserve genetic information. In animals, nuclear periphery proteins - including inner nuclear membrane proteins and nuclear pore-associated components - are key factors which regulate DNA integrity. Corresponding functional homologues are not so well known in plants which may have developed specific mechanisms due to their sessile life. We have already characterized the Gamma-tubulin Complex Protein 3-interacting proteins (GIPs) as essential regulators of centromeric cohesion at the nuclear periphery. GIPs were also shown to interact with TSA1, first described as a partner of the epigenetic regulator MGOUN3 (MGO3)/BRUSHY1 (BRU1)/TONSOKU (TSK) involved in genomic maintenance. Here, using genetic analyses, we show that the mgo3gip1 mutants display an impaired and pleiotropic development including fasciation. We also provide evidence for the contribution of both MGO3 and GIP1 to the regulation of centromeric cohesion in Arabidopsis.


Subject(s)
Arabidopsis Proteins/metabolism , Carrier Proteins/metabolism , Centromere/metabolism , Arabidopsis/cytology , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Carrier Proteins/genetics , Chromatids/metabolism , DNA Replication , Mutation , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...