Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
J Immunother Cancer ; 12(5)2024 May 03.
Article in English | MEDLINE | ID: mdl-38702145

ABSTRACT

BACKGROUND: Skeletal morbidity in patients with cancer has a major impact on the quality of life, and preserving bone health while improving outcomes is an important goal of modern antitumor treatment strategies. Despite their widespread use in early disease stages, the effects of immune checkpoint inhibitors (ICIs) on the skeleton are still poorly defined. Here, we initiated a comprehensive investigation of the impact of ICIs on bone health by longitudinal assessment of bone turnover markers in patients with cancer and by validation in a novel bioengineered 3D model of bone remodeling. METHODS: An exploratory longitudinal study was conducted to assess serum markers of bone resorption (C-terminal telopeptide, CTX) and formation (procollagen type I N-terminal propeptide, PINP, and osteocalcin, OCN) before each ICI application (programmed cell death 1 (PD1) inhibitor or programmed death-ligand 1 (PD-L1) inhibitor) for 6 months or until disease progression in patients with advanced cancer and no evidence of bone metastases. To validate the in vivo results, we evaluated osteoclast (OC) and osteoblast (OB) differentiation on treatment with ICIs. In addition, their effect on bone remodeling was assessed by immunohistochemistry, confocal microscopy, and proteomics analysis in a dynamic 3D bone model. RESULTS: During the first month of treatment, CTX levels decreased sharply but transiently. In contrast, we observed a delayed increase of serum levels of PINP and OCN after 4 months of therapy. In vitro, ICIs impaired the maturation of preosteoclasts by inhibiting STAT3/NFATc1 signaling but not JNK, ERK, and AKT while lacking any direct effect on osteogenesis. However, using our bioengineered 3D bone model, which enables the simultaneous differentiation of OB and OC precursor cells, we confirmed the uncoupling of the OC/OB activity on exposure to ICIs by demonstrating impaired OC maturation along with increased OB differentiation. CONCLUSION: Our study indicates that the inhibition of the PD1/PD-L1 signaling axis interferes with bone turnover and may exert a protective effect on bone by indirectly promoting osteogenesis.


Subject(s)
Bone Remodeling , Immune Checkpoint Inhibitors , Humans , Bone Remodeling/drug effects , Male , Female , Prospective Studies , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Middle Aged , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , Aged , Longitudinal Studies , Neoplasms/drug therapy , Adult
2.
Nat Commun ; 15(1): 2941, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580643

ABSTRACT

Programmed DNA double-strand break (DSB) formation is a crucial feature of meiosis in most organisms. DSBs initiate recombination-mediated linking of homologous chromosomes, which enables correct chromosome segregation in meiosis. DSBs are generated on chromosome axes by heterooligomeric focal clusters of DSB-factors. Whereas DNA-driven protein condensation is thought to assemble the DSB-machinery, its targeting to chromosome axes is poorly understood. We uncover in mice that efficient biogenesis of DSB-machinery clusters requires seeding by axial IHO1 platforms. Both IHO1 phosphorylation and formation of axial IHO1 platforms are diminished by chemical inhibition of DBF4-dependent kinase (DDK), suggesting that DDK contributes to the control of the axial DSB-machinery. Furthermore, we show that axial IHO1 platforms are based on an interaction between IHO1 and the chromosomal axis component HORMAD1. IHO1-HORMAD1-mediated seeding of the DSB-machinery on axes ensures sufficiency of DSBs for efficient pairing of homologous chromosomes. Without IHO1-HORMAD1 interaction, residual DSBs depend on ANKRD31, which enhances both the seeding and the growth of DSB-machinery clusters. Thus, recombination initiation is ensured by complementary pathways that differentially support seeding and growth of DSB-machinery clusters, thereby synergistically enabling DSB-machinery condensation on chromosomal axes.


Subject(s)
Cell Cycle Proteins , DNA Breaks, Double-Stranded , Mice , Animals , Cell Cycle Proteins/metabolism , DNA , Meiosis/genetics , Synaptonemal Complex/metabolism , Recombination, Genetic , Homologous Recombination
3.
bioRxiv ; 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38077023

ABSTRACT

Programmed DNA double-strand break (DSB) formation is a unique meiotic feature that initiates recombination-mediated linking of homologous chromosomes, thereby enabling chromosome number halving in meiosis. DSBs are generated on chromosome axes by heterooligomeric focal clusters of DSB-factors. Whereas DNA-driven protein condensation is thought to assemble the DSB-machinery, its targeting to chromosome axes is poorly understood. We discovered in mice that efficient biogenesis of DSB-machinery clusters requires seeding by axial IHO1 platforms, which are based on a DBF4-dependent kinase (DDK)-modulated interaction between IHO1 and the chromosomal axis component HORMAD1. IHO1-HORMAD1-mediated seeding of the DSB-machinery on axes ensures sufficiency of DSBs for efficient pairing of homologous chromosomes. Without IHO1-HORMAD1 interaction, residual DSBs depend on ANKRD31, which enhances both the seeding and the growth of DSB-machinery clusters. Thus, recombination initiation is ensured by complementary pathways that differentially support seeding and growth of DSB-machinery clusters, thereby synergistically enabling DSB-machinery condensation on chromosomal axes.

4.
Cells ; 12(10)2023 05 19.
Article in English | MEDLINE | ID: mdl-37408259

ABSTRACT

The interaction between monocytes and endothelial cells in inflammation is central to chemoattraction, adhesion, and transendothelial migration. Key players, such as selectins and their ligands, integrins, and other adhesion molecules, and their functions in these processes are well studied. Toll-like receptor 2 (TLR2), expressed in monocytes, is critical for sensing invading pathogens and initiating a rapid and effective immune response. However, the extended role of TLR2 in monocyte adhesion and migration has only been partially elucidated. To address this question, we performed several functional cell-based assays using monocyte-like wild type (WT), TLR2 knock-out (KO), and TLR2 knock-in (KI) THP-1 cells. We found that TLR2 promotes the faster and stronger adhesion of monocytes to the endothelium and a more intense endothelial barrier disruption after endothelial activation. In addition, we performed quantitative mass spectrometry, STRING protein analysis, and RT-qPCR, which not only revealed the association of TLR2 with specific integrins but also uncovered novel proteins affected by TLR2. In conclusion, we show that unstimulated TLR2 influences cell adhesion, endothelial barrier disruption, migration, and actin polymerization.


Subject(s)
Chemotaxis , Toll-Like Receptor 2 , Humans , Cell Adhesion , Endothelial Cells/metabolism , Integrins , THP-1 Cells , Toll-Like Receptor 2/metabolism , Cell Movement
5.
Nat Struct Mol Biol ; 30(5): 640-649, 2023 05.
Article in English | MEDLINE | ID: mdl-37106137

ABSTRACT

The Swi2/Snf2 family transcription regulator Modifier of Transcription 1 (Mot1) uses adenosine triphosphate (ATP) to dissociate and reallocate the TATA box-binding protein (TBP) from and between promoters. To reveal how Mot1 removes TBP from TATA box DNA, we determined cryogenic electron microscopy structures that capture different states of the remodeling reaction. The resulting molecular video reveals how Mot1 dissociates TBP in a process that, intriguingly, does not require DNA groove tracking. Instead, the motor grips DNA in the presence of ATP and swings back after ATP hydrolysis, moving TBP to a thermodynamically less stable position on DNA. Dislodged TBP is trapped by a chaperone element that blocks TBP's DNA binding site. Our results show how Swi2/Snf2 proteins can remodel protein-DNA complexes through DNA bending without processive DNA tracking and reveal mechanistic similarities to RNA gripping DEAD box helicases and RIG-I-like immune sensors.


Subject(s)
Saccharomyces cerevisiae Proteins , TATA-Binding Protein Associated Factors , Adenosine Triphosphatases/metabolism , Transcription Factors/metabolism , TATA Box , TATA-Box Binding Protein/chemistry , Saccharomyces cerevisiae Proteins/metabolism , DNA/chemistry , Adenosine Triphosphate/metabolism , TATA-Binding Protein Associated Factors/chemistry
6.
Cells ; 12(5)2023 02 22.
Article in English | MEDLINE | ID: mdl-36899833

ABSTRACT

In endothelial cells (ECs), stimulation of Toll-like receptor 4 (TLR4) by the endotoxin lipopolysaccharide (LPS) induces the release of diverse pro-inflammatory mediators, beneficial in controlling bacterial infections. However, their systemic secretion is a main driver of sepsis and chronic inflammatory diseases. Since distinct and rapid induction of TLR4 signaling is difficult to achieve with LPS due to the specific and non-specific affinity to other surface molecules and receptors, we engineered new light-oxygen-voltage-sensing (LOV)-domain-based optogenetic endothelial cell lines (opto-TLR4-LOV LECs and opto-TLR4-LOV HUVECs) that allow fast, precise temporal, and reversible activation of TLR4 signaling pathways. Using quantitative mass-spectrometry, RT-qPCR, and Western blot analysis, we show that pro-inflammatory proteins were not only expressed differently, but also had a different time course when the cells were stimulated with light or LPS. Additional functional assays demonstrated that light induction promoted chemotaxis of THP-1 cells, disruption of the EC monolayer and transmigration. In contrast, ECs incorporating a truncated version of the TLR4 extracellular domain (opto-TLR4 ΔECD2-LOV LECs) revealed high basal activity with fast depletion of the cell signaling system upon illumination. We conclude that the established optogenetic cell lines are well suited to induce rapid and precise photoactivation of TLR4, allowing receptor-specific studies.


Subject(s)
Lipopolysaccharides , Toll-Like Receptor 4 , Endothelial Cells/metabolism , Gene Expression , Lipopolysaccharides/pharmacology , Signal Transduction , Toll-Like Receptor 4/metabolism , Human Umbilical Vein Endothelial Cells , Humans
7.
Biomark Res ; 10(1): 43, 2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35681175

ABSTRACT

BACKGROUND: Immunotherapy of acute myeloid leukemia has experienced considerable advances, however novel target antigens continue to be sought after. To this end, unbiased approaches for surface protein detection are limited and integration with other data types, such as gene expression and somatic mutational burden, are poorly utilized. The Cell Surface Capture technology provides an unbiased, discovery-driven approach to map the surface proteins on cells of interest. Yet, direct utilization of primary patient samples has been limited by the considerable number of viable cells needed. METHODS: Here, we optimized the Cell Surface Capture protocol to enable direct interrogation of primary patient samples and applied our optimized protocol to a set of samples from patients with acute myeloid leukemia (AML) to generate the AML surfaceome. We then further curated this AML surfaceome to exclude antigens expressed on healthy tissues and integrated mutational burden data from hematologic cancers to further enrich for targets which are likely to be essential to leukemia biology. Finally, we validated our findings in a separate cohort of AML patient samples. RESULTS: Our protocol modifications allowed us to double the yield in identified proteins and increased the specificity from 54 to 80.4% compared to previous approaches. Using primary AML patient samples, we were able to identify a total of 621 surface proteins comprising the AML surfaceome. We integrated this data with gene expression and mutational burden data to curate a set of robust putative target antigens. Seventy-six proteins were selected as potential candidates for further investigation of which we validated the most promising novel candidate markers, and identified CD148, ITGA4 and Integrin beta-7 as promising targets in AML. Integrin beta-7 showed the most promising combination of expression in patient AML samples, and low or absent expression on healthy hematopoietic tissue. CONCLUSION: Taken together, we demonstrate the feasibility of a highly optimized surfaceome detection method to interrogate the entire AML surfaceome directly from primary patient samples and integrate this data with gene expression and mutational burden data to achieve a robust, multiomic target identification platform. This approach has the potential to accelerate the unbiased target identification for immunotherapy of AML.

8.
EMBO J ; 40(18): e108004, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34313341

ABSTRACT

Kinetochores form the link between chromosomes and microtubules of the mitotic spindle. The heterodecameric Dam1 complex (Dam1c) is a major component of the Saccharomyces cerevisiae outer kinetochore, assembling into 3 MDa-sized microtubule-embracing rings, but how ring assembly is specifically initiated in vivo remains to be understood. Here, we describe a molecular pathway that provides local control of ring assembly during the establishment of sister kinetochore bi-orientation. We show that Dam1c and the general microtubule plus end-associated protein (+TIP) Bim1/EB1 form a stable complex depending on a conserved motif in the Duo1 subunit of Dam1c. EM analyses reveal that Bim1 crosslinks protrusion domains of adjacent Dam1c heterodecamers and promotes the formation of oligomers with defined curvature. Disruption of the Dam1c-Bim1 interaction impairs kinetochore localization of Dam1c in metaphase and delays mitosis. Phosphorylation promotes Dam1c-Bim1 binding by relieving an intramolecular inhibition of the Dam1 C-terminus. In addition, Bim1 recruits Bik1/CLIP-170 to Dam1c and induces formation of full rings even in the absence of microtubules. Our data help to explain how new kinetochore end-on attachments are formed during the process of attachment error correction.


Subject(s)
Kinetochores/metabolism , Microtubule Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Saccharomycetales/physiology , Chromosome Segregation , Mitosis/physiology , Multiprotein Complexes/metabolism , Phosphorylation , Protein Binding , Spindle Apparatus/metabolism
9.
EMBO J ; 40(1): e105179, 2021 01 04.
Article in English | MEDLINE | ID: mdl-33289941

ABSTRACT

In eukaryotic translation, termination and ribosome recycling phases are linked to subsequent initiation of a new round of translation by persistence of several factors at ribosomal sub-complexes. These comprise/include the large eIF3 complex, eIF3j (Hcr1 in yeast) and the ATP-binding cassette protein ABCE1 (Rli1 in yeast). The ATPase is mainly active as a recycling factor, but it can remain bound to the dissociated 40S subunit until formation of the next 43S pre-initiation complexes. However, its functional role and native architectural context remains largely enigmatic. Here, we present an architectural inventory of native yeast and human ABCE1-containing pre-initiation complexes by cryo-EM. We found that ABCE1 was mostly associated with early 43S, but also with later 48S phases of initiation. It adopted a novel hybrid conformation of its nucleotide-binding domains, while interacting with the N-terminus of eIF3j. Further, eIF3j occupied the mRNA entry channel via its ultimate C-terminus providing a structural explanation for its antagonistic role with respect to mRNA binding. Overall, the native human samples provide a near-complete molecular picture of the architecture and sophisticated interaction network of the 43S-bound eIF3 complex and the eIF2 ternary complex containing the initiator tRNA.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Ribosome Subunits, Small, Eukaryotic/metabolism , Cell Line , DNA-Binding Proteins/metabolism , Eukaryotic Initiation Factor-2/metabolism , HEK293 Cells , Humans , Protein Binding/physiology , Protein Biosynthesis/physiology , RNA, Messenger/metabolism , RNA, Transfer/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
10.
Cell Rep ; 32(13): 108190, 2020 09 29.
Article in English | MEDLINE | ID: mdl-32997987

ABSTRACT

Kinetochores are macromolecular protein assemblies at centromeres that mediate accurate chromosome segregation during cell division. The outer kinetochore KNL1SPC105, MIS12MTW1, and NDC80NDC80 complexes assemble the KMN network, which harbors the sites of microtubule binding and spindle assembly checkpoint signaling. The buildup of the KMN network that transmits microtubule pulling forces to budding yeast point centromeres is poorly understood. Here, we identify 225 inter-protein crosslinks by mass spectrometry on KMN complexes isolated from Saccharomyces cerevisiae that delineate the KMN subunit connectivity for outer kinetochore assembly. C-Terminal motifs of Nsl1 and Mtw1 recruit the SPC105 complex through Kre28, and both motifs aid tethering of the NDC80 complex by the previously reported Dsn1 C terminus. We show that a hub of three C-terminal MTW1 subunit motifs mediates the cooperative stabilization of the KMN network, which is augmented by a direct NDC80-SPC105 association.


Subject(s)
Kinetochores/metabolism , Mass Spectrometry/methods , Microtubule-Associated Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomycetales/pathogenicity , Amino Acid Sequence
11.
EMBO J ; 39(14): e102938, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32515113

ABSTRACT

Kinetochores are chromatin-bound multi-protein complexes that allow high-fidelity chromosome segregation during mitosis and meiosis. Kinetochore assembly is exclusively initiated at chromatin containing Cse4/CENP-A nucleosomes. The molecular mechanisms ensuring that subcomplexes assemble efficiently into kinetochores only at centromeres, but not anywhere else, are incompletely understood. Here, we combine biochemical and genetic experiments to demonstrate that auto-inhibition of the conserved kinetochore subunit Mif2/CENP-C contributes to preventing unscheduled kinetochore assembly in budding yeast cells. We show that wild-type Mif2 is attenuated in its ability to bind a key downstream component in the assembly pathway, the Mtw1 complex, and that addition of Cse4 nucleosomes overcomes this inhibition. By exchanging the N-terminus of Mif2 with its functional counterpart from Ame1/CENP-U, we have created a Mif2 mutant which bypasses the Cse4 requirement for Mtw1 binding in vitro, thereby shortcutting kinetochore assembly. Expression of this Mif2 mutant in cells leads to mis-localization of the Mtw1 complex and causes pronounced chromosome segregation defects. We propose that auto-inhibition of Mif2/CENP-C constitutes a key concept underlying the molecular logic of kinetochore assembly.


Subject(s)
DNA-Binding Proteins/metabolism , Kinetochores/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , DNA-Binding Proteins/genetics , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
12.
Anal Chem ; 91(11): 6953-6961, 2019 06 04.
Article in English | MEDLINE | ID: mdl-31045356

ABSTRACT

The number of publications in the field of chemical cross-linking combined with mass spectrometry (XL-MS) to derive constraints for protein three-dimensional structure modeling and to probe protein-protein interactions has increased during the last years. As the technique is now becoming routine for in vitro and in vivo applications in proteomics and structural biology there is a pressing need to define protocols as well as data analysis and reporting formats. Such consensus formats should become accepted in the field and be shown to lead to reproducible results. This first, community-based harmonization study on XL-MS is based on the results of 32 groups participating worldwide. The aim of this paper is to summarize the status quo of XL-MS and to compare and evaluate existing cross-linking strategies. Our study therefore builds the framework for establishing best practice guidelines to conduct cross-linking experiments, perform data analysis, and define reporting formats with the ultimate goal of assisting scientists to generate accurate and reproducible XL-MS results.


Subject(s)
Cross-Linking Reagents/chemistry , Mass Spectrometry/methods , Serum Albumin, Bovine/analysis , Serum Albumin, Bovine/chemistry , Laboratories , Mass Spectrometry/instrumentation , Reproducibility of Results
13.
Elife ; 82019 05 21.
Article in English | MEDLINE | ID: mdl-31112132

ABSTRACT

Kinetochores are macromolecular protein complexes at centromeres that ensure accurate chromosome segregation by attaching chromosomes to spindle microtubules and integrating safeguard mechanisms. The inner kinetochore is assembled on CENP-A nucleosomes and has been implicated in establishing a kinetochore-associated pool of Aurora B kinase, a chromosomal passenger complex (CPC) subunit, which is essential for chromosome biorientation. By performing crosslink-guided in vitro reconstitution of budding yeast kinetochore complexes we showed that the Ame1/Okp1CENP-U/Q heterodimer, which forms the COMA complex with Ctf19/Mcm21CENP-P/O, selectively bound Cse4CENP-A nucleosomes through the Cse4 N-terminus. The Sli15/Ipl1INCENP/Aurora-B core-CPC interacted with COMA in vitro through the Ctf19 C-terminus whose deletion affected chromosome segregation fidelity in Sli15 wild-type cells. Tethering Sli15 to Ame1/Okp1 rescued synthetic lethality upon Ctf19 depletion in a Sli15 centromere-targeting deficient mutant. This study shows molecular characteristics of the point-centromere kinetochore architecture and suggests a role for the Ctf19 C-terminus in mediating CPC-binding and accurate chromosome segregation.


Subject(s)
Kinetochores/chemistry , Protein Interaction Maps , Saccharomyces cerevisiae Proteins/analysis , Saccharomycetales/chemistry , Protein Binding
14.
Mol Cell ; 73(6): 1191-1203.e6, 2019 03 21.
Article in English | MEDLINE | ID: mdl-30824373

ABSTRACT

Protein transport into the nucleus is mediated by transport receptors. Import of highly charged proteins, such as histone H1 and ribosomal proteins, requires a dimer of two transport receptors. In this study, we determined the cryo-EM structure of the Imp7:Impß:H1.0 complex, showing that the two importins form a cradle that accommodates the linker histone. The H1.0 globular domain is bound to Impß, whereas the acidic loops of Impß and Imp7 chaperone the positively charged C-terminal tail. Although it remains disordered, the H1 tail serves as a zipper that closes and stabilizes the structure through transient non-specific interactions with importins. Moreover, we found that the GGxxF and FxFG motifs in the Imp7 C-terminal tail are essential for Imp7:Impß dimerization and H1 import, resembling importin interaction with nucleoporins, which, in turn, promote complex disassembly. The architecture of many other complexes might be similarly defined by rapidly exchanging electrostatic interactions mediated by disordered regions.


Subject(s)
Cell Nucleus/metabolism , Histones/metabolism , Karyopherins/metabolism , Active Transport, Cell Nucleus , Animals , Binding Sites , Cell Nucleus/genetics , Cell Nucleus/ultrastructure , Cryoelectron Microscopy , Humans , Karyopherins/genetics , Karyopherins/ultrastructure , Models, Molecular , Multiprotein Complexes , Mutation , Nuclear Pore Complex Proteins/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Static Electricity , Structure-Activity Relationship , Xenopus Proteins/genetics , Xenopus Proteins/metabolism , Xenopus laevis , beta Karyopherins/genetics , beta Karyopherins/metabolism , ran GTP-Binding Protein/metabolism
15.
Elife ; 82019 01 18.
Article in English | MEDLINE | ID: mdl-30657449

ABSTRACT

The meiotic chromosome axis plays key roles in meiotic chromosome organization and recombination, yet the underlying protein components of this structure are highly diverged. Here, we show that 'axis core proteins' from budding yeast (Red1), mammals (SYCP2/SYCP3), and plants (ASY3/ASY4) are evolutionarily related and play equivalent roles in chromosome axis assembly. We first identify 'closure motifs' in each complex that recruit meiotic HORMADs, the master regulators of meiotic recombination. We next find that axis core proteins form homotetrameric (Red1) or heterotetrameric (SYCP2:SYCP3 and ASY3:ASY4) coiled-coil assemblies that further oligomerize into micron-length filaments. Thus, the meiotic chromosome axis core in fungi, mammals, and plants shares a common molecular architecture, and likely also plays conserved roles in meiotic chromosome axis assembly and recombination control.


Subject(s)
Arabidopsis/metabolism , Chromosomes/ultrastructure , Meiosis , Saccharomyces cerevisiae Proteins/metabolism , Animals , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , DNA Breaks, Double-Stranded , Haploidy , Kinetics , Mass Spectrometry , Mice , Mutation , Nuclear Proteins/metabolism , Protein Domains , Protein Interaction Mapping , Recombination, Genetic , Saccharomyces cerevisiae/metabolism , Scattering, Radiation , Synaptonemal Complex/metabolism , Synchrotrons , Two-Hybrid System Techniques , Zygosaccharomyces/metabolism
16.
J Cell Biol ; 216(11): 3785-3798, 2017 11 06.
Article in English | MEDLINE | ID: mdl-28912124

ABSTRACT

Cell spreading requires the coupling of actin-driven membrane protrusion and integrin-mediated adhesion to the extracellular matrix. The integrin-activating adaptor protein kindlin-2 plays a central role for cell adhesion and membrane protrusion by directly binding and recruiting paxillin to nascent adhesions. Here, we report that kindlin-2 has a dual role during initial cell spreading: it binds paxillin via the pleckstrin homology and F0 domains to activate Rac1, and it directly associates with the Arp2/3 complex to induce Rac1-mediated membrane protrusions. Consistently, abrogation of kindlin-2 binding to Arp2/3 impairs lamellipodia formation and cell spreading. Our findings identify kindlin-2 as a key protein that couples cell adhesion by activating integrins and the induction of membrane protrusions by activating Rac1 and supplying Rac1 with the Arp2/3 complex.


Subject(s)
Actin-Related Protein 2-3 Complex/metabolism , Cell Adhesion , Cell Shape , Cytoskeletal Proteins/metabolism , Fibroblasts/metabolism , Muscle Proteins/metabolism , Paxillin/metabolism , Pseudopodia/metabolism , Actin-Related Protein 2-3 Complex/genetics , Animals , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Line , Cytoskeletal Proteins/deficiency , Cytoskeletal Proteins/genetics , Genotype , Mice, Knockout , Muscle Proteins/deficiency , Muscle Proteins/genetics , Neuropeptides/genetics , Neuropeptides/metabolism , Paxillin/genetics , Phenotype , Protein Binding , Protein Interaction Domains and Motifs , Signal Transduction , Talin/deficiency , Talin/genetics , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism
17.
EMBO J ; 36(16): 2419-2434, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28659378

ABSTRACT

Proteins of the conserved HORMA domain family, including the spindle assembly checkpoint protein MAD2 and the meiotic HORMADs, assemble into signaling complexes by binding short peptides termed "closure motifs". The AAA+ ATPase TRIP13 regulates both MAD2 and meiotic HORMADs by disassembling these HORMA domain-closure motif complexes, but its mechanisms of substrate recognition and remodeling are unknown. Here, we combine X-ray crystallography and crosslinking mass spectrometry to outline how TRIP13 recognizes MAD2 with the help of the adapter protein p31comet We show that p31comet binding to the TRIP13 N-terminal domain positions the disordered MAD2 N-terminus for engagement by the TRIP13 "pore loops", which then unfold MAD2 in the presence of ATP N-terminal truncation of MAD2 renders it refractory to TRIP13 action in vitro, and in cells causes spindle assembly checkpoint defects consistent with loss of TRIP13 function. Similar truncation of HORMAD1 in mouse spermatocytes compromises its TRIP13-mediated removal from meiotic chromosomes, highlighting a conserved mechanism for recognition and disassembly of HORMA domain-closure motif complexes by TRIP13.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Carrier Proteins/metabolism , Cell Cycle Proteins/metabolism , Mad2 Proteins/metabolism , Nuclear Proteins/metabolism , Protein Unfolding , ATPases Associated with Diverse Cellular Activities , Adenosine Triphosphate/metabolism , Crystallography, X-Ray , Humans , Mass Spectrometry , Models, Molecular , Protein Conformation
18.
Nucleic Acids Res ; 45(W1): W276-W284, 2017 07 03.
Article in English | MEDLINE | ID: mdl-28498958

ABSTRACT

The molecular understanding of cellular processes requires the identification and characterization of the involved protein complexes. Affinity-purification and mass spectrometric analysis (AP-MS) are performed on a routine basis to detect proteins assembled in complexes. In particular, protein abundances obtained by quantitative mass spectrometry and direct protein contacts detected by crosslinking and mass spectrometry (XL-MS) provide complementary datasets for revealing the composition, topology and interactions of modules in a protein network. Here, we aim to combine quantitative and connectivity information by a webserver tool in order to infer protein complexes. In a first step, modeling protein abundances and functional annotations from Gene Ontology (GO) results in a network which, in a second step, is integrated with connectivity data from XL-MS analysis in order to complement and validate the protein complexes in the network. The output of our integrative approach is a quantitative protein interaction map which is supplemented with topological information of the detected protein complexes. compleXView is built up by two independent modules which are dedicated to the analysis of label-free AP-MS data and to the visualization of the detected complexes in a network together with crosslink-derived distance restraints. compleXView is available to all users without login requirements at http://xvis.genzentrum.lmu.de/compleXView.


Subject(s)
Multiprotein Complexes/metabolism , Protein Interaction Mapping/methods , Software , Internet , Mass Spectrometry , Multiprotein Complexes/chemistry , Protein Interaction Maps , Protein Phosphatase 2/metabolism
19.
J Cell Biol ; 216(4): 961-981, 2017 04 03.
Article in English | MEDLINE | ID: mdl-28320825

ABSTRACT

Kinetochores are macromolecular assemblies that connect chromosomes to spindle microtubules (MTs) during mitosis. The metazoan-specific ≈800-kD ROD-Zwilch-ZW10 (RZZ) complex builds a fibrous corona that assembles on mitotic kinetochores before MT attachment to promote chromosome alignment and robust spindle assembly checkpoint signaling. In this study, we combine biochemical reconstitutions, single-particle electron cryomicroscopy, cross-linking mass spectrometry, and structural modeling to build a complete model of human RZZ. We find that RZZ is structurally related to self-assembling cytosolic coat scaffolds that mediate membrane cargo trafficking, including Clathrin, Sec13-Sec31, and αß'ε-COP. We show that Spindly, a dynein adaptor, is related to BicD2 and binds RZZ directly in a farnesylation-dependent but membrane-independent manner. Through a targeted chemical biology approach, we identify ROD as the Spindly farnesyl receptor. Our results suggest that RZZ is dynein's cargo at human kinetochores.


Subject(s)
Kinetochores/metabolism , Microtubule-Associated Proteins/metabolism , Spindle Apparatus/metabolism , Spindle Apparatus/physiology , Carrier Proteins/metabolism , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Dyneins/metabolism , HeLa Cells , Humans , Kinetochores/physiology , M Phase Cell Cycle Checkpoints/physiology , Microtubules/metabolism , Mitosis/physiology , Protein Transport/physiology
20.
Elife ; 52016 11 30.
Article in English | MEDLINE | ID: mdl-27901467

ABSTRACT

The Hsp104 disaggregase is a two-ring ATPase machine that rescues various forms of non-native proteins including the highly resistant amyloid fibers. The structural-mechanistic underpinnings of how the recovery of toxic protein aggregates is promoted and how this potent unfolding activity is prevented from doing collateral damage to cellular proteins are not well understood. Here, we present structural and biochemical data revealing the organization of Hsp104 from Chaetomium thermophilum at 3.7 Å resolution. We show that the coiled-coil domains encircling the disaggregase constitute a 'restraint mask' that sterically controls the mobility and thus the unfolding activity of the ATPase modules. In addition, we identify a mechanical linkage that coordinates the activity of the two ATPase rings and accounts for the high unfolding potential of Hsp104. Based on these findings, we propose a general model for how Hsp104 and related chaperones operate and are kept under control until recruited to appropriate substrates.


Subject(s)
Chaetomium/enzymology , Heat-Shock Proteins/chemistry , Heat-Shock Proteins/metabolism , Crystallography, X-Ray , Models, Molecular , Protein Aggregates , Protein Conformation , Protein Domains , Protein Unfolding
SELECTION OF CITATIONS
SEARCH DETAIL
...