Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
J Phys Chem C Nanomater Interfaces ; 128(19): 7936-7947, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38774155

ABSTRACT

An aqueous colloidal suspension of gold nanoparticles (AuNPs) may be condensed into a thin fractal film at the polarizable liquid-liquid interface formed between two immiscible electrolyte solutions upon injection of millimolar concentrations of sodium chloride to the aqueous phase. By adjusting the interfacial polarization conditions (negative, intermediate, and positive open-circuit potentials), the morphology of the film is modified, resulting in unique surface plasmon properties of the film, which enable in situ surface-enhanced Raman spectroscopy (SERS). Intense SERS signals are observed at the polarizable liquid-liquid interface when micromolar concentrations of tolmetin, a nonsteroidal anti-inflammatory drug, are entrapped in the AuNP fractal film. The change in the signal intensity, averaged over multiple spectra, with respect to the concentration of tolmetin, depends on the polarization conditions and suggests the presence of chemical-induced damping effects on the surface plasmons of the gold film.

2.
ACS Sens ; 7(8): 2209-2217, 2022 08 26.
Article in English | MEDLINE | ID: mdl-35838550

ABSTRACT

Accurate and rapid on-site analysis of free SO2 content is crucial in the process of winemaking from a producer and consumer perspective. Herein, we present an amperometric sensor based on commercially available screen-printed electrodes coupled with an electrochemical oxygen filter. The developed amperometric method gave a linear response in a concentration range up to 200 mg L-1 with a limit of quantification of 7.5 mg L-1. The applicability of the developed sensor was successfully tested on 27 white and red wine samples and compared to the Ripper method (iodometry) that is a standard procedure for free SO2 determination. The sensor exhibits similar precision and accuracy but shows no interference from oxidizable species such as ascorbic acid, which is a major advantage over iodometric titration. The performance of the sensor was in addition positively evaluated during on-site analysis in a winery.


Subject(s)
Wine , Ascorbic Acid/analysis , Electrodes , Sulfites/analysis , Wine/analysis
3.
Chem Commun (Camb) ; 58(20): 3270-3273, 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35079752

ABSTRACT

Electrochemical, spectroscopic and computational methods are used to demonstrate that electrified aqueous|organic interfaces are a suitable bio-mimetic platform to study and contrast the accelerated electrocatalytic activity of cytochrome c towards the production of reactive oxygen species (ROS) in the presence of denaturing agents such as guanidinium chloride and urea.


Subject(s)
Cytochromes c , Water , Cytochromes c/chemistry , Guanidine/chemistry , Reactive Oxygen Species , Urea/chemistry , Water/chemistry
4.
Faraday Discuss ; 233(0): 77-99, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-34889333

ABSTRACT

Indium-tin oxide electrodes modified with vertically aligned silica nanochannel membranes have been produced by electrochemically assisted self-assembly of cationic surfactants (cetyl- or octadecyl-trimethylammonium bromide) and concomitant polycondensation of the silica precursors (tetraethoxysilane). They exhibited pore diameters in the 2-3 nm range depending on the surfactant used. After surfactant removal, the bottom of mesopores was derivatized with aminophenyl groups via electrografting (i.e., electrochemical reduction of in situ generated aminophenyl monodiazonium salt). These species covalently bonded to the ITO substrate were then exploited to grow polyaniline nanofilaments by electropolymerization of aniline through the nanochannels. Under potentiostatic conditions, the length of polyaniline wires is controllable by tuning the electropolymerization time. From cyclic voltammetry characterization performed either before or after dissolution of the silica template, it appeared that both the polyaniline/silica composite and the free polyaniline nanowire arrays were electroactive, yet with much larger peak currents in the latter case as a result of larger effective surface area offered to the electrolyte solution. At identical electropolymerization time, the amount of deposited polyaniline was larger when using the silica membrane with larger pore diameter. All polyaniline deposits exhibited electrochromic properties. However, the spectroelectrochemical data indicated more complete interconversion between the coloured oxidized form and colourless reduced polyaniline for the arrays of nanofilaments in comparison to bulky films. In addition, the template-free nanowire arrays (i.e., after silica dissolution) were characterized by faster electrochromic behaviour than the polyaniline/silica hybrid, confirming the potential interest of such polyaniline nano-brushes for practical applications.

5.
Mikrochim Acta ; 188(12): 413, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34751834

ABSTRACT

The electrochemical behavior of cefotaxime (CTX+) was investigated at the polarized macro- and micro-interface between two immiscible electrolyte solutions (ITIES) by cyclic voltammetry and alternating current voltammetry. Miniaturization was achieved with fused silica microcapillary tubing entrapped in a polymeric casing. Scanning electron microscopy (SEM) was employed for the fabricated LLI support characterization. Voltammetric investigation of CTX+ at macro- and µ-ITIES allowed the determination of many physicochemical parameters, such as formal Galvani potential of the ion transfer reaction ([Formula: see text]), diffusion coefficients (D), formal free Gibbs energy of the ion transfer reaction (∆G'aq → org), and water-1,2-dichloroethane partition coefficient ([Formula: see text]). Additionally, based on the results obtained the analytical parameters including voltammetric sensitivity, limits of detection and the limits of quantification (in micromolar range) were calculated. The applicability of the developed procedures was verified in spiked still mineral and tap water samples.


Subject(s)
Anti-Bacterial Agents/chemistry , Cefotaxime/chemistry , Electrolytes/chemistry , Miniaturization , Solutions/chemistry
6.
Sci Adv ; 7(45): eabg4119, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34739310

ABSTRACT

Programmed cell death via apoptosis is a natural defence against excessive cell division, crucial for fetal development to maintenance of homeostasis and elimination of precancerous and senescent cells. Here, we demonstrate an electrified liquid biointerface that replicates the molecular machinery of the inner mitochondrial membrane at the onset of apoptosis. By mimicking in vivo cytochrome c (Cyt c) interactions with cell membranes, our platform allows us to modulate the conformational plasticity of the protein by simply varying the electrochemical environment at an aqueous-organic interface. We observe interfacial electron transfer between an organic electron donor decamethylferrocene and O2, electrocatalyzed by Cyt c. This interfacial reaction requires partial Cyt c unfolding, mimicking Cyt c in vivo peroxidase activity. As proof of concept, we use our electrified liquid biointerface to identify drug molecules, such as bifonazole, that can potentially down-regulate Cyt c and protect against uncontrolled neuronal cell death in neurodegenerative disorders.

7.
Anal Chim Acta ; 1167: 338544, 2021 Jul 04.
Article in English | MEDLINE | ID: mdl-34049625

ABSTRACT

A rapid and reliable oxygen elimination system was evaluated here for the electroanalytical study of metals. Dissolved oxygen was removed locally in the vicinity of a sensor by the means of electrochemical oxygen filter constructed from platinum grids. Three metals (Cd, Pb, and Zn) were determined by stripping chronopotentiometry (SCP) at a mercury film screen-printed electrode. Limits of detection of metals were in the nanomolar range under optimized experimental conditions. The electrochemical device was also tested for metal quantification in simple electrolyte solutions and in a natural water matrix. The proposed combination of oxygen elimination system with the metal sensor completely removes the need to purge the sample before SCP measurement. This makes the determination of metals by SCP faster, portable and more suited for on-field applications.

8.
Langmuir ; 37(13): 4033-4041, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33761740

ABSTRACT

Interactions of a protein with a solid-liquid or a liquid-liquid interface may destabilize its conformation and hence result in a loss of biological activity. We propose here a method for the immobilization of proteins at an electrified liquid-liquid interface. Cytochrome c (Cyt c) is encapsulated in a silica matrix through an electrochemical process at an electrified liquid-liquid interface. Silica condensation is triggered by the interfacial transfer of cationic surfactant, cetyltrimethylammonium, at the lower end of the interfacial potential window. Cyt c is then adsorbed on the previously electrodeposited silica layer, when the interfacial potential, Δowϕ, is at the positive end of the potential window. By cycling of the potential window back and forth, silica electrodeposition and Cyt c adsorption occur sequentially as demonstrated by in situ UV-vis absorbance spectroscopy. After collection from the liquid-liquid interface, the Cyt c-silica matrix is characterized ex situ by UV-vis diffuse reflectance spectroscopy, confocal Raman microscopy, and fluorescence microscopy, showing that the protein maintained its tertiary structure during the encapsulation process. The absence of denaturation is further confirmed in situ by the absence of electrocatalytic activity toward O2 (observed in the case of Cyt c denaturation). This method of protein encapsulation may be used for other proteins (e.g., Fe-S cluster oxidoreductases, copper-containing reductases, pyrroloquinoline quinone-containing enzymes, or flavoproteins) in the development of biphasic bioelectrosynthesis or bioelectrocatalysis applications.


Subject(s)
Cytochromes c , Silicon Dioxide , Adsorption , Electroplating
9.
RSC Adv ; 11(27): 16297-16306, 2021 Apr 30.
Article in English | MEDLINE | ID: mdl-35479128

ABSTRACT

A bar micro-solid phase (bar µ-SPE) extraction method using either graphene or zeolite or their mixtures as an adsorbent, coupled with high-performance liquid chromatography (using a C1 column) was developed for the simultaneous determination of pharmaceutical compounds (metformin (MET), buformin (BUF), phenformin (PHEN) and propranolol (PROP)) of diverse polarity (log P from -1.82 to 3.10). Parameters influencing the extraction, such as conditioning solvents, pH of the sample, sample volume, amount of adsorbent, stirring rate, time of extraction, type and volume of desorption solvent and time of desorption were investigated. Under the optimized conditions, the extraction method using graphene (extraction efficiency, % EE, ∼6-15%) resulted in the least amount of extracted drugs. However, the use of zeolite and zeolite/graphene mixtures improves the % EE significantly, i.e. 30% for PHEN and 42% for PROP using zeolite; 22% for MET and 18% for BUF using the adsorbent mixture. Under similar conditions, enrichment factors for these drugs range from 11-15. The validated method was performed for the determination of the drugs that were spiked to urine samples. Good recoveries ranging from 72.8 to 116% were achieved.

10.
Talanta ; 220: 121347, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32928388

ABSTRACT

A novel concept is introduced for signal amplification in electrochemical sensing: the electro-oligomerisation stripping voltammetry, which has been applied here to the improved detection of the isoproturon herbicide in spring waters as a proof-of-principle. It involves a potentiostatic accumulation step onto a glassy carbon electrode (at +1.5 V vs Ag/AgCl reference electrode for 300 s) leading to the formation of an oligomeric film, which is then detected by cathodic stripping square wave voltammetry (SWV). The presence and composition of the film are confirmed by confocal Raman spectroscopy. Its characterisation by cyclic voltammetry demonstrates the reversible nature of the electrodeposited material, confirming its interest for sensitive detection by SWV. Adding a mesoporous silica membrane with vertically oriented nanochannels further enhances the sensitivity of the sensor, exhibiting a linear response in the 10-100 µM concentration range. This effect was even more interesting for real media analysis thanks to the permselective properties of such nanoporous coating in rejecting interferences and/or surface fouling agents. The method should be applicable to other analytes that are usually not detectable by conventional accumulation/stripping voltammetry.

11.
Anal Chem ; 92(11): 7425-7429, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32342694

ABSTRACT

An electrochemical oxygen filter is described that removes efficiently dissolved oxygen from the surface of an electrochemical sensor. Simulations show that 99% of oxygen can be removed in less than 60 s if an electrochemical filter made of a porous electrode is positioned at less than 200 µm from the sensor surface. For an experimental demonstration, the metallic filter was made with either a stainless steel or a platinum grid separated from the sensor by a porous separator. It was combined with a sensor for analysis of paraquat, an herbicide widely used over the world. In aerated solutions, paraquat signal was not distinguished due to the strong interference of oxygen. When using the oxygen filter, paraquat was clearly detected with a better-defined response than the one obtained under a N2 atmosphere that requires a longer time period before analysis.

12.
ACS Omega ; 5(3): 1540-1548, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-32010827

ABSTRACT

The development of three-dimensional (3D) porous graphitic structures is of great interest for electrochemical sensing applications as they can support fast charge transfer and mass transport through their extended, large surface area networks. In this work, we present the facile fabrication of conductive and porous graphitic electrodes by direct laser writing techniques. Irradiation of commercial polyimide sheets (Kapton tape) was performed using a low-cost laser engraving machine with visible excitation wavelength (405 nm) at low power (500 mW), leading to formation of 3D laser-induced graphene (LIG) structures. Systematic correlation between applied laser dwell time per pixel ("dwell time") and morphological/structural properties of fabricated electrodes showed that conductive and highly 3D porous structures with spectral signatures of nanocrystalline graphitic carbon materials were obtained at laser dwell times between 20 and 110 ms/pix, with graphenelike carbon produced at 50 ms/pix dwell time, with comparable properties to LIG obtained with high cost CO2 lasers. Electrochemical characterization with inner and outer sphere mediators showed fast electron transfer rates, comparable to previously reported 2D/3D graphene-based materials and other graphitic carbon electrodes. This work opens the way to the facile fabrication of low-cost, disposable electrochemical sensor platforms for decentralized assays.

13.
Anal Chem ; 91(11): 7466-7473, 2019 06 04.
Article in English | MEDLINE | ID: mdl-31050400

ABSTRACT

A new sample preparation method is proposed for the extraction of pharmaceutical compounds (Metformin, Phenyl biguanide, and Phenformin) of varied hydrophilicity, dissolved in an aqueous sample. When in contact with an organic phase, an interfacial potential is imposed by the presence of an ion, tetramethylammonium (TMA+), common to each phase. The interfacial potential difference drives the transfer of ionic analytes across the interface and allows it to reach up to nearly 100% extraction efficiency and a 60-fold enrichment factor in optimized extraction conditions as determined by HPLC analysis.


Subject(s)
Biguanides/isolation & purification , Electrochemical Techniques , Liquid-Liquid Extraction , Metformin/isolation & purification , Phenformin/isolation & purification , Biguanides/chemistry , Chromatography, High Pressure Liquid , Hydrophobic and Hydrophilic Interactions , Metformin/chemistry , Phenformin/chemistry , Quaternary Ammonium Compounds/chemistry
14.
Faraday Discuss ; 210(0): 113-130, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29974089

ABSTRACT

The investigation of electrochemical processes at the interface of two immiscible electrolyte solutions (ITIES) is of great interest for sensing applications, and serves as a surrogate to the study of biological transport phenomena, e.g. ion channels. Alongside e-beam lithography, focused ion beam (FIB) milling is an attractive method to prototype and fabricate nanopore arrays that support nanoITIES. Within this contribution, we explore the capability of FIB/scanning electron microscopy (SEM) tomography to visualize the actual pore structure and interfaces at silica-modified nanoporous membranes. The nanopores were also characterized by atomic force microscopy (AFM) using ultra-sharp AFM probes to determine the pore diameter, and using scanning transmission electron microscopy (STEM) and energy dispersive X-ray (EDX) spectroscopy, providing additional information on the elemental composition of deposits within the pores. Si-rich particles could be identified within the pores as well as at the orifice that had faced the organic electrolyte solution during electrochemical deposition. The prospects of the used techniques for investigating the interface at or within FIB-milled nanopores will be discussed.

15.
ACS Sens ; 3(2): 484-493, 2018 02 23.
Article in English | MEDLINE | ID: mdl-29338195

ABSTRACT

An electrochemical method was developed for rapid and sensitive detection of the herbicide paraquat in aqueous samples using mesoporous silica thin film modified glassy carbon electrodes (GCE). Vertically aligned mesoporous silica thin films were deposited onto GCE by electrochemically assisted self-assembly (EASA). Cyclic voltammetry revealed effective response to the cationic analyte (while rejecting anions) thanks to the charge selectivity exhibited by the negatively charged mesoporous channels. Square wave voltametry (SWV) was then used to detect paraquat via its one electron reduction process. Influence of various experimental parameters (i.e., pH, electrolyte concentration, and nature of electrolyte anions) on sensitivity was investigated and discussed with respect to the mesopore characteristics and accumulation efficiency, pointing out the key role of charge distribution in such confined spaces on these processes. Calibration plots for paraquat concentration ranging from 10 nM to 10 µM were constructed at mesoporous silica modified GCE which were linear with increasing paraquat concentration, showing dramatically enhanced sensitivity (almost 30 times) as compared to nonmodified electrodes. Finally, real samples from Meuse River (France) spiked with paraquat, without any pretreatment (except filtration), were analyzed by SWV, revealing the possible detection of paraquat at very low concentration (10-50 nM). Limit of detection (LOD) calculated from real sample analysis was found to be 12 nM, which is well below the permissible limits of paraquat in drinking water (40-400 nM) in various countries.


Subject(s)
Electrochemical Techniques/methods , Paraquat/analysis , Silicon Dioxide/chemistry , Water Pollutants, Chemical/analysis , Electrochemical Techniques/instrumentation , Electrodes , Porosity , Rivers/chemistry , Surface Properties
16.
Langmuir ; 33(17): 4224-4234, 2017 05 02.
Article in English | MEDLINE | ID: mdl-28398065

ABSTRACT

The growth of vertically aligned and ordered polyaniline nanofilaments is controlled by potentiostatic polymerization through hexagonally packed and oriented mesoporous silica films. In such small pore template (2 nm in diameter), quasi-single PANI chains are likely to be produced. From chronoamperometric experiments and using films of various thicknesses (100-200 nm) it is possible to evidence the electropolymerization transients, wherein each stage of polymerization (induction period, growth, and overgrowth of polyaniline on mesoporous silica films) is clearly identified. The advantageous effect of mesostructured silica thin films as hard templates for the generation of isolated polyaniline nanofilaments is demonstrated from enhancement of the reversibility between the conductive and the nonconductive states of polyaniline and the higher electroactive surface areas displayed for all mesoporous silica/PANI composites. The possibility to control and tailor the growth of conducting polymer nanofilaments offers numerous opportunities for applications in various fields including energy, sensors and biosensors, photovoltaics, nanophotonics, or nanoelectronics.

17.
Anal Chem ; 88(13): 6689-95, 2016 07 05.
Article in English | MEDLINE | ID: mdl-27264360

ABSTRACT

The direct experimental characterization of diffusion processes at nanoscale remains a challenge that could help elucidate processes in biology, medicine and technology. In this report, two experimental approaches were employed to visualize ion diffusion profiles at the orifices of nanopores (radius (ra) of 86 ± 6 nm) in array format: (1) electrochemically assisted formation of silica deposits based on surfactant ion transfer across nanointerfaces between two immiscible electrolyte solutions (nanoITIES); (2) combined atomic force - scanning electrochemical microscopy (AFM-SECM) imaging of topography and redox species diffusion through the nanopores. The nature of the diffusion zones formed around the pores is directly related to the interpore distance within the array. Nanopore arrays with different ratios of pore center-to-center separation (rc) to pore radius (ra) were fabricated by focused ion beam (FIB) milling of silicon nitride (SiN) membranes, with 100 pores in a hexagonal arrangement. The ion diffusion profiles determined by the two visualization methods indicated the formation of overlapped or independent diffusion profiles at nanopore arrays with rc/ra ratios of 21 ± 2 and 91 ± 7, respectively. In particular, the silica deposition method resulted in formation of a single deposit encompassing the complete array with closer nanopore arrangement, whereas individual silica deposits were formed around each nanopore within the more widely spaced array. The methods reveal direct experimental evidence of diffusion zones at nanopore arrays and provide practical illustration that the pore-pore separation within such arrays has a significant impact on diffusional transport as the pore size is reduced to the nanoscale. These approaches to nanoscale diffusion zone visualization open up possibilities for better understanding of molecular transport processes within miniaturized systems.


Subject(s)
Electrochemical Techniques , Nanopores , Diffusion , Membranes, Artificial , Microarray Analysis , Microscopy, Atomic Force , Silicon Compounds/chemistry , Silicon Dioxide/chemistry
18.
Langmuir ; 32(17): 4323-32, 2016 05 03.
Article in English | MEDLINE | ID: mdl-27065214

ABSTRACT

Vertically oriented mesoporous silica has proven to be of interest for applications in a variety of fields (e.g., electroanalysis, energy, and nanotechnology). Although glassy carbon is widely used as an electrode material, the adherence of silica deposits is rather poor, causing mechanical instability. A solution to improve the adhesion of mesoporous silica films onto glassy carbon electrodes without compromising the vertical orientation and the order of the mesopores will greatly contribute to the use of this kind of modified carbon electrode. We propose here the electrografting of 3-aminopropyltriethoxysilane on glassy carbon as a molecular glue to improve the mechanical stability of the silica film on the electrode surface without disturbing the vertical orientation and the order of the mesoporous silica obtained by electrochemically assisted self-assembly. These findings are supported by a series of surface chemistry techniques such as X-ray photoelectron spectroscopy, scanning and transmission electron microscopy, and cyclic voltammetry. Finally, methylviologen was used as a model redox probe to investigate the cathodic potential region of both glassy carbon and indium tin oxide electrodes modified with mesoporous silica in order to demonstrate further the interest in the approach developed here.

19.
Analyst ; 140(12): 3888-96, 2015 Jun 21.
Article in English | MEDLINE | ID: mdl-26000343

ABSTRACT

Ion transfer at the interface between two immiscible electrolyte solutions allows the non-redox electrochemical detection of ions ranging from protons to macromolecules such as proteins. New electrochemical methods and analytical procedures have been developed in recent years to achieve limits of detection of from µM down to tens of pM for ion sensing in biomedical diagnostics and in environmental monitoring. This article reviews the developments of the period 2010-2015.

20.
Phys Chem Chem Phys ; 16(48): 26955-62, 2014 Dec 28.
Article in English | MEDLINE | ID: mdl-25377062

ABSTRACT

Interfacial processes controlled by ion transfer voltammetry at the interface between two immiscible electrolyte solutions were studied by in situ Raman spectroscopy. Raman spectra of the interface between a 5 mM NaCl aqueous solution and 10 mM bis(triphenyl-phosphoranydieneammonium) tetrakis(4-chlorophenyl)borate in 1,2-dichloroethane were recorded at open circuit potential and at various interfacial potential differences. At open-circuit potential, Raman peaks assigned to vibrational modes of 1,2-dichloroethane are clearly visible and peaks of weak intensity are measured for the organic electrolyte ions. When a negative interfacial potential difference is applied, the intensity of the peaks of the cation of the organic electrolyte increases, confirming its transfer induced by the interfacial potential difference applied. The electrochemically assisted generation of mesoporous silica deposits was then followed by in situ confocal Raman spectroscopy. The condensation of mesoporous silica was controlled by the transfer of cetyltrimethylammonium (CTA(+)) ions to an aqueous phase containing hydrolysed silanes. The transfer of CTA(+) at the interface was monitored in situ by confocal Raman spectroscopy, and formation of silica was observed.


Subject(s)
Electrochemical Techniques/instrumentation , Electrolytes/chemistry , Silicon Dioxide/chemistry , Spectrum Analysis, Raman/instrumentation , Adsorption , Ammonium Compounds/chemistry , Cetrimonium Compounds/chemistry , Equipment Design , Ethylene Dichlorides/chemistry , Ions/chemistry , Porosity , Sodium Chloride/chemistry , Surface Properties , Tetraphenylborate/analogs & derivatives , Tetraphenylborate/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...