Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 16(12)2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38139846

ABSTRACT

BACKGROUND: The combination of platinum-containing cytostatic drugs with different radiation qualities has been studied for years. Despite their massive side effects, these drugs still belong to the therapeutic portfolio in cancer treatment. To overcome the disadvantages of cisplatin, our study investigated the cytotoxic effects of combining radionuclides with cisplatin. METHODS: FaDu cells were treated with cisplatin (concentration ≈ 2 µM) and additionally irradiated after two hours with the alpha-emitter 223Ra, the beta-emitter 188Re as well as external X-rays using dose ranges of 2-6 Gy. Cell survival was followed by colony formation assays and plotted against cisplatin concentration and radiation dose. The results were interpreted by isobolograms. RESULTS: Isobolographic analyses revealed a supra-additive cytotoxic effect for the combination of cisplatin and 223Ra. A sub-additive effect was observed for the combination of cisplatin and 188Re, whereas a protective effect was found for the combination with X-rays. CONCLUSIONS: The combination of cisplatin and 223Ra may have the potential to create a successfully working therapy scheme for various therapy approaches, whereas the combination with 188Re as well as single-dose X-ray treatment did not lead to a detectable radiosensitizing effect. Thus, the combination with alpha-emitters might be advantageous and, therefore, should be followed in future studies when combined with cytostatic drugs.

2.
Diagnostics (Basel) ; 12(4)2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35454006

ABSTRACT

Through a multitude of studies, the gut microbiota has been recognized as a significant influencer of both homeostasis and pathophysiology. Certain microbial taxa can even affect treatments such as cancer immunotherapies, including the immune checkpoint blockade. These taxa can impact such processes both individually as well as collectively through mechanisms from quorum sensing to metabolite production. Due to this overarching presence of the gut microbiota in many physiological processes distal to the GI tract, we hypothesized that mice bearing tumors at extraintestinal sites would display a distinct intestinal microbial signature from non-tumor-bearing mice, and that such a signature would involve taxa that collectively shift with tumor presence. Microbial OTUs were determined from 16S rRNA genes isolated from the fecal samples of C57BL/6 mice challenged with either B16-F10 melanoma cells or PBS control and analyzed using QIIME. Relative proportions of bacteria were determined for each mouse and, using machine-learning approaches, significantly altered taxa and co-occurrence patterns between tumor- and non-tumor-bearing mice were found. Mice with a tumor had elevated proportions of Ruminococcaceae, Peptococcaceae.g_rc4.4, and Christensenellaceae, as well as significant information gains and ReliefF weights for Bacteroidales.f__S24.7, Ruminococcaceae, Clostridiales, and Erysipelotrichaceae. Bacteroidales.f__S24.7, Ruminococcaceae, and Clostridiales were also implicated through shifting co-occurrences and PCA values. Using these seven taxa as a melanoma signature, a neural network reached an 80% tumor detection accuracy in a 10-fold stratified random sampling validation. These results indicated gut microbial proportions as a biosensor for tumor detection, and that shifting co-occurrences could be used to reveal relevant taxa.

3.
Integr Biol (Camb) ; 13(1): 1-16, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33443535

ABSTRACT

Tumor emboli-aggregates of tumor cells within vessels-pose a clinical challenge as they are associated with increased metastasis and tumor recurrence. When growing within a vessel, tumor emboli are subject to a unique mechanical constraint provided by the tubular geometry of the vessel. Current models of tumor emboli use unconstrained multicellular tumor spheroids, which neglect this mechanical interplay. Here, we modeled a lymphatic vessel as a 200 µm-diameter channel in either a stiff or soft, bioinert agarose matrix to create a vessel-like constraint model (VLCM), and we modeled colon or breast cancer tumor emboli with aggregates of HCT116 or SUM149PT cells, respectively. The stiff matrix VLCM constrained the tumor emboli to the cylindrical channel, which led to continuous growth of the emboli, in contrast to the growth rate reduction that unconstrained spheroids exhibit. Emboli morphology in the soft matrix VLCM, however, was dependent on the magnitude of mechanical mismatch between the matrix and the cell aggregates. In general, when the elastic modulus of the matrix of the VLCM was greater than the emboli (EVLCM/Eemb > 1), the emboli were constrained to grow within the channel, and when the elastic modulus of the matrix was less than the emboli (0 < EVLCM/Eemb < 1), the emboli bulged into the matrix. Due to a large difference in myosin II expression between the cell lines, we hypothesized that tumor cell aggregate stiffness is an indicator of cellular force-generating capability. Inhibitors of myosin-related force generation decreased the elastic modulus and/or increased the stress relaxation of the tumor cell aggregates, effectively increasing the mechanical mismatch. The increased mechanical mismatch after drug treatment was correlated with increased confinement of tumor emboli growth along the channel, which may translate to increased tumor burden due to the increased tumor volume within the diffusion distance of nutrients and oxygen.


Subject(s)
Breast Neoplasms , Lymphatic Vessels , Neoplastic Cells, Circulating , Female , Humans , Spheroids, Cellular
4.
Viruses ; 12(7)2020 06 28.
Article in English | MEDLINE | ID: mdl-32605312

ABSTRACT

In an increasingly interconnected world, the exposure and subsequent spread of emergent viruses has become inevitable. This is particularly true for Aedes (Ae.) mosquito-vectored viruses, whose range has increased over the past decade from tropical to temperate regions. However, it is unclear if all populations of Ae. mosquitoes in temperate New York City are able to successfully replicate and transmit arboviruses. To answer this question, we reared Ae. albopictus mosquitoes living in a temperate climate from three locations in New York City. We first sequenced the salivary antiviral protein D7 from individual mosquitoes in each population and found single nucleotide variants that are both shared and unique for each Ae. albopictus population. We then fed each population chikungunya virus (CHIKV) via an artificial blood meal. All three mosquito populations could be infected with CHIKV, yet viral titers differed between populations at 7 days post infection. Moreover, we found that these mosquitoes could transmit CHIKV to mice, and that virus RNA reached the saliva as early as two days post infection. Upon sequencing of the saliva CHIKV genomic RNA, we found mutations at sites correlated with increased transmission and virulence. These studies show that NYC Ae. albopictus populations can be infected with and transmit CHIKV, CHIKV is able to evolve in these mosquitoes, and that host salivary factors display population-specific diversity. Taken together, these studies highlight the need to study how distinct mosquito populations control viral infections, both at the virus and host level.


Subject(s)
Aedes/virology , Chikungunya Fever/transmission , Chikungunya virus/physiology , Insect Proteins/metabolism , Mosquito Vectors/virology , Salivary Proteins and Peptides/metabolism , Animals , Chikungunya Fever/virology , Chikungunya virus/genetics , Female , Humans , Insect Proteins/genetics , Male , Mice, Inbred C57BL , Mosquito Vectors/genetics , Mosquito Vectors/metabolism , New York City , Salivary Proteins and Peptides/genetics , Species Specificity , Virus Replication
5.
Proc Natl Acad Sci U S A ; 117(2): 1119-1128, 2020 01 14.
Article in English | MEDLINE | ID: mdl-31888983

ABSTRACT

Reprogramming the tumor microenvironment to increase immune-mediated responses is currently of intense interest. Patients with immune-infiltrated "hot" tumors demonstrate higher treatment response rates and improved survival. However, only the minority of tumors are hot, and a limited proportion of patients benefit from immunotherapies. Innovative approaches that make tumors hot can have immediate impact particularly if they repurpose drugs with additional cancer-unrelated benefits. The seasonal influenza vaccine is recommended for all persons over 6 mo without prohibitive contraindications, including most cancer patients. Here, we report that unadjuvanted seasonal influenza vaccination via intratumoral, but not intramuscular, injection converts "cold" tumors to hot, generates systemic CD8+ T cell-mediated antitumor immunity, and sensitizes resistant tumors to checkpoint blockade. Importantly, intratumoral vaccination also provides protection against subsequent active influenza virus lung infection. Surprisingly, a squalene-based adjuvanted vaccine maintains intratumoral regulatory B cells and fails to improve antitumor responses, even while protecting against active influenza virus lung infection. Adjuvant removal, B cell depletion, or IL-10 blockade recovers its antitumor effectiveness. Our findings propose that antipathogen vaccines may be utilized for both infection prevention and repurposing as a cancer immunotherapy.


Subject(s)
Immunotherapy/methods , Influenza Vaccines/administration & dosage , Influenza Vaccines/immunology , Influenza Vaccines/therapeutic use , Injections, Intralesional , Neoplasms/drug therapy , Neoplasms/immunology , Adjuvants, Immunologic/administration & dosage , Animals , B-Lymphocytes , Basic-Leucine Zipper Transcription Factors/genetics , CD8-Positive T-Lymphocytes/immunology , Humans , Immunity, Cellular , Influenza A Virus, H1N1 Subtype/immunology , Influenza, Human , Interleukin-10 , Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Mice , Mice, Inbred C57BL , Repressor Proteins/genetics , Seasons , Skin , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Squalene/administration & dosage , Tumor Microenvironment/drug effects , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL
...