Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 18782, 2020 11 02.
Article in English | MEDLINE | ID: mdl-33139823

ABSTRACT

Antibiotic overprescribing is a global challenge contributing to rising levels of antibiotic resistance and mortality. We test a novel approach to antibiotic stewardship. Capitalising on the concept of "wisdom of crowds", which states that a group's collective judgement often outperforms the average individual, we test whether pooling treatment durations recommended by different prescribers can improve antibiotic prescribing. Using international survey data from 787 expert antibiotic prescribers, we run computer simulations to test the performance of the wisdom of crowds by comparing three data aggregation rules across different clinical cases and group sizes. We also identify patterns of prescribing bias in recommendations about antibiotic treatment durations to quantify current levels of overprescribing. Our results suggest that pooling the treatment recommendations (using the median) could improve guideline compliance in groups of three or more prescribers. Implications for antibiotic stewardship and the general improvement of medical decision making are discussed. Clinical applicability is likely to be greatest in the context of hospital ward rounds and larger, multidisciplinary team meetings, where complex patient cases are discussed and existing guidelines provide limited guidance.


Subject(s)
Antimicrobial Stewardship , Computer Simulation , Inappropriate Prescribing/prevention & control , Inappropriate Prescribing/statistics & numerical data , Decision Making , Humans , Interdisciplinary Communication , Patient Care Team , Practice Guidelines as Topic
2.
Sci Adv ; 5(11): eaaw9011, 2019 11.
Article in English | MEDLINE | ID: mdl-31976366

ABSTRACT

Distinguishing between high- and low-performing individuals and groups is of prime importance in a wide range of high-stakes contexts. While this is straightforward when accurate records of past performance exist, these records are unavailable in most real-world contexts. Focusing on the class of binary decision problems, we use a combined theoretical and empirical approach to develop and test a approach to this important problem. First, we use a general mathematical argument and numerical simulations to show that the similarity of an individual's decisions to others is a powerful predictor of that individual's decision accuracy. Second, testing this prediction with several large datasets on breast and skin cancer diagnostics, geopolitical forecasting, and a general knowledge task, we find that decision similarity robustly permits the identification of high-performing individuals and groups. Our findings offer a simple, yet broadly applicable, heuristic for improving real-world decision-making systems.


Subject(s)
Decision Making , Forecasting , Work Performance , Algorithms , Humans , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...