Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 12(11): e9453, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36340814

ABSTRACT

Niche differentiation has served as one explanation for species coexistence, and phylogenetic relatedness provides a means to approximate how ecologically similar species are to each other. To explore the contribution of rare species to community phylogenetic diversity, we sampled 21 plant communities across the Prairie Coteau ecoregion, an area of high conservation concern. We used breakpoint analysis through the iterative addition of less abundant species to the phylogenetic tree for each community to assess the contribution of rare species to community phylogenetic diversity. We also quantify the phylogenetic signal of abundance using Blomberg's K statistic and calculated the phylogenetic similarity between rare and common species using a phylogenetic beta-diversity metric (D nn). To estimate the phylogenetic structuring of these prairie communities, we calculated two common metrics that capture evolutionary relatedness at different scales (MPD and MNTD). Additionally, we examine the correlation between Faith's PD, MPD, and MNTD and species richness. We found rare species do not generally contribute higher levels of phylogenetic diversity than common species. Eight communities had significant breakpoints, with only four communities having an increasing trend for the rarest species. The phylogenetic signal for abundance was low but significant in only four communities, and communities had lower phylogenetic diversity than expected from the regional species pool. Finally, the strength of the correlation between species richness and phylogenetic diversity was mixed. Our results indicate niche differentiation does not explain the persistence of rare species in tallgrass prairies, as they were more closely related than expected from random, suggesting high functional redundancy between rare and common species. This is promising for the long-term resilience of this ecosystem, but only insofar as enough species remain in the system. With ongoing biodiversity loss, it is essential that we understand the role rare species play in their communities.

2.
Appl Plant Sci ; 9(1): e11405, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33552747

ABSTRACT

PREMISE: The tallgrass prairies of North America are one of the most threatened ecosystems in the world, making efficient species identification essential for understanding and managing diversity. Here, we assess DNA barcoding with high-throughput sequencing as a method for rapid plant species identification. METHODS: Using herbarium collections representing the tallgrass prairie flora of Oak Lake Field Station, South Dakota, USA, we amplified and examined four common nuclear and plastid barcode regions (ITS, matK, psbA-trnH, and rbcL), individually and in combination, to test their success in identifying samples to family, genus, and species levels using BLAST searches of three databases of varying size. RESULTS: Concatenated barcodes increased performance, although none were significantly different than single-region barcodes. The plastid region psbA-trnH performed significantly more poorly than the others, while barcodes containing ITS performed best. Database size significantly affected identification success at all three taxonomic levels. Confident species-level identification ranged from 8-44% for the global database, 13-56% for the regional database, and 21-80% for the sampled species database, depending on the barcode used. DISCUSSION: Barcoding was generally successful in identifying tallgrass prairie genera and families, but was of limited use in species-level identifications. Database size was an important factor in successful plant identification. We discuss future directions and considerations for improving the performance of DNA barcoding in tallgrass prairies.

SELECTION OF CITATIONS
SEARCH DETAIL
...