Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 363
Filter
1.
Article in English | MEDLINE | ID: mdl-38981968

ABSTRACT

The rapid increase in global plastic production and usage has led to global environmental contamination, with microplastics (MPs) emerging as a significant concern. Pollinators provide a crucial ecological service, while bee populations have been declining in recent years, and MPs have been recognized as a new risk factor contributing to their losses. Despite the pervasive distribution and persistence of MPs, understanding their risks to honey bees remains a critical knowledge gap. This review summarizes recent studies that investigate the toxicity of MPs on honey bee health from different perspectives. The findings revealed diverse and material-/size-/dosage-dependent outcomes, emphasizing the need for comprehensive assessments in the follow-up studies. MPs have been detected in honey and in bees' organs (e.g., gut and brain), posing potential threats to bee fitness, including altered behavior, cognitive abilities, compromised immunity, and dysfunction of the gut microbiota. It should be noticed that despite several laboratory studies suggesting the aforementioned adverse effects of MPs, field/semi-field experiments are still warranted. The synergistic toxicity of MPs with other environmental contaminants (pesticides, antibiotics, fungicides, heavy metals, etc.) still requires further investigation. Our review highlights the critical need to understand the relationships between MPs, pollinators, and the ecosystem to mitigate potential risks and ensure the sustainability of vital services provided by honey bees.

2.
Expert Opin Ther Pat ; 34(8): 723-732, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38965930

ABSTRACT

INTRODUCTION: Boswellic acids (BAs) are a group of pentacyclic triterpenoids of the ursane and oleanane type. They have shown very interesting biological properties that have led to the development of a number of synthesis protocols. Both natural BAs and their synthetic derivatives may be useful in the treatment of a variety of cancers, viral infections and inflammatory diseases. AREAS COVERED: This review covers patents relating to the therapeutic activities of natural BAs and their synthetic derivatives. The latest patented studies of boswellic acids (are summarized by using the keywords 'boswellic acid,' in SciFinder, PubMed, and Google Patents and databases in the year from 2016 to 2023. EXPERT OPINION: Boswellic acids have shown potent antiviral, anticancer and anti-inflammatory potential. Few BAs analogues have been prepared by modification at the C24-CO2H functional groups. In particular, the C-24 amide and amino analogues have shown enhanced anticancer effects compared to the parent AKBA. In addition, BAs have the ability to form conjugates with other antiviral, anti-inflammatory and anticancer drugs that synergistically enhance their biological efficacy. In addition, this conjugation strategy will increase the solubility and bioavailability of BAs, which is one of the most important issues in the development of BAs.


Subject(s)
Anti-Inflammatory Agents , Antiviral Agents , Drug Development , Neoplasms , Patents as Topic , Triterpenes , Humans , Triterpenes/pharmacology , Triterpenes/chemistry , Animals , Antiviral Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Inflammation/drug therapy , Virus Diseases/drug therapy , Biological Availability
3.
Int J Biol Macromol ; 274(Pt 1): 133249, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906361

ABSTRACT

Nanocomposites are sophisticated materials that incorporate nanostructures into matrix materials, such as polymers, ceramics and metals. Generally, the marine ecosystem exhibits severe variability in terms of light, temperature, pressure, and nutrient status, forcing the marine organisms to develop variable, complex and unique chemical structures to boost their competitiveness and chances of survival. Polymers sourced from marine creatures, such as chitin, chitosan, alginate, sugars, proteins, and collagen play a crucial role in the bioengineering field, contributing significantly to the development of nanostructures like nanoparticles, nanocomposites, nanotubes, quantum dots, etc. These nanostructures offer a wide array of features involving mechanical strength, thermal stability, electrical conductivity, barrier and optical characteristics compared to traditional composites. Notably, marine nanocomposites have distinctive roles in a wide spectrum of applications, among them anti-cancer, anti-microbial, antioxidant, cytotoxic, food packing, tissue engineering and catalytic actions. Sol-gel, hot pressing, chemical vapor deposition, catalytic decomposition, dispersion, melt intercalation, in situ intercalative polymerization, high-energy ball milling and template synthesis are common processes utilized in engineering nanocomposites. According to our literature survey and the Web of Science, chitosan, followed by cellulose, chitin and MAPs emerge as the most significant marine polymers utilized in the construction of nanocomposites. Taken together, the current manuscript underscores the biogenesis of nanocomposites, employing marine polymers using eco-friendly processes. Furthermore, significant emphasis in this area is needed to fully explore their capabilities and potential benefits. To the best of our knowledge, this manuscript stands as the first comprehensive review that discusses the role of marine-derived polymers in engineering nanocomposites for various applications.

4.
RSC Adv ; 14(26): 18553-18566, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38903055

ABSTRACT

Marine endosymbionts have gained remarkable interest in the last three decades in terms of natural products (NPs) isolated thereof, emphasizing the chemical correlations with those isolated from the host marine organism. The current study aimed to conduct comparative metabolic profiling of the marine red algae Corallina officinalis, and three fungal endosymbionts isolated from its inner tissues namely, Aspergillus nidulans, A. flavipes and A. flavus. The ethyl acetate (EtOAc) extracts of the host organism as well as the isolated endosymbionts were analyzed using ultra-high performance liquid chromatography coupled to high resolution tandem mass spectrometry (UHPLC-MS/MS)in both positive and negative ion modes, applying both full scan (FS) and all ion fragmentation (AIF) modes. Extensive interpretation of the LC-MS/MS spectra had led to the identification of 76 metabolites belonging to different phytochemical classes including alkaloids, polyketides, sesquiterpenes, butyrolactones, peptides, fatty acids, isocoumarins, quinones, among others. Metabolites were tentatively identified by comparing the accurate mass and fragmentation pattern with metabolites previously reported in the literature, as well as bioinformatics analysis using GNPS. A relationship between the host C. officinalis and its endophytes (A. flavus, A. nidulans, and A. flavipes) was discovered. C. officinalis shares common metabolites with at least one of the three endosymbiotic fungi. Some metabolites have been identified in endophytes and do not exist in their host. Multivariate analysis (MVA) revealed discrimination of A. flavipes from Corallina officinalis and other associated endophytic Aspergillus fungi (A. flavus and A. nidulans).

5.
Plants (Basel) ; 13(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38794382

ABSTRACT

Polyphenolic compounds are vital components of plants. However, their analysis is particularly difficult and challenging due to their similar chemical and structural properties. In this study, we developed a simple and reproducible HPLC-DAD protocol for determining nineteen pharmacologically important polyphenols in plant-based food samples, including fruits (apple, banana, grapefruit, peach, grapes, plum, and pear), vegetables (onion, cabbage, capsicum, garlic, lemon, tomato, potato, and spinach), and other edible items (corn, kidney beans, green tea, black tea, and turmeric). The reference standards were pooled into four different groups based on logP values and expected retention time to avoid compound co-elution. These developed methods will be useful for the qualitative and quantitative analysis of biologically important polyphenolic compounds in various food samples and botanicals.

6.
Chem Biodivers ; 21(7): e202400351, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38717108

ABSTRACT

Diabetes mellitus is a global health issue characterized by hyperglycemia which leads over time to severe damage to numerous tissues. The present study aimed to estimate the effect of Egyptian Sidr honey against streptozotocin (STZ)-induced diabetes in rats. Diabetic rats were treated with Sidr honey daily for 4 consecutive weeks. The biochemical profile of blood samples was measured. Furthermore, the activity of antioxidant enzymes, nitric oxide (NO), and malonaldehyde (MDA) were examined in hepatic and pancreatic tissues. Moreover, the expression of Bax, Caspase-3, and Bcl2 proteins were measured. Results revealed that the capability of Sidr honey to decline the elevated blood glucose and fructosamine levels. Also, the honey decreased the levels of NO and MDA. Furthermore, it regulated the antioxidant enzymes activity. Moreover, it reduced the expression levels of Caspase-3 and Bax while increased the Bcl2 level. In conclusion, Sidr honey can regulate hyperglycemia, oxidative stress, apoptosis, and antioxidant enzymes in STZ-induced diabetic rats.


Subject(s)
Apoptosis , Diabetes Mellitus, Experimental , Honey , Oxidative Stress , Streptozocin , Animals , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/pathology , Oxidative Stress/drug effects , Apoptosis/drug effects , Rats , Honey/analysis , Male , Egypt , Antioxidants/pharmacology , Antioxidants/chemistry , Rats, Wistar , Blood Glucose/analysis , Blood Glucose/metabolism , Nitric Oxide/metabolism , Caspase 3/metabolism , Malondialdehyde/metabolism
7.
Reprod Toxicol ; 126: 108586, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38614435

ABSTRACT

This study examined the protective effects of a Petroselinum crispum (P. crispum) methanolic extract on reproductive dysfunction induced by acrylamide in male rats. A total of 40 rats were divided into four groups (n=10). The control group received distilled water, the acrylamide group received 10 mg/kg of acrylamide, the P. crispum group received 100 mg/kg of P. crispum extract, and the combined group was pretreated with P. crispum for two weeks before co-administration of P. crispum and acrylamide. All administrations were administered orally using a gastric tube for eight weeks. Acrylamide decreased testosterone levels but did not affect levels of FSH or LH. It also increased testicular levels of (MDA) malondialdehyde and reduced activity of (SOD) superoxide dismutase and impairment of sperm parameters. Furthermore, the administration of acrylamide resulted in an elevation of tumor necrosis factor-alpha (TNF-α) levels and a reduction in the levels of steroidogenic acute regulatory protein (STAR) and cytochrome P450scc (P450scc). Acrylamide negatively affected the histopathological outcomes, Johnsen's score, the diameter of seminiferous tubules, and the thickness of the germinal epithelium. It also upregulated the expression of NF-ĸB P65 and downregulated the expression of kinesin motor protein. In contrast, treatment with P. crispum extract restored the levels of antioxidant enzymes, improved sperm parameters, and normalized the gene expression of TNF-α, IL-10, IL-6, iNOS, NF-ĸB, STAR, CYP17A1, 17ß-HSD and P450scc. It also recovered testicular histological parameters and immunoexpression of NF-ĸB P65 and kinesin altered by acrylamide. P. crispum showed protective effects against acrylamide-induced reproductive toxicity by suppressing oxidative damage and inflammatory pathways.


Subject(s)
Acrylamide , NF-kappa B , Plant Extracts , Testis , Animals , Male , Acrylamide/toxicity , Plant Extracts/pharmacology , Testis/drug effects , Testis/metabolism , Testis/pathology , NF-kappa B/metabolism , Testosterone/blood , Spermatozoa/drug effects , Rats, Sprague-Dawley , Methanol/chemistry , Protective Agents/pharmacology , Rats , Luteinizing Hormone/blood , Phosphoproteins
8.
Anal Methods ; 16(17): 2721-2731, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38629244

ABSTRACT

Acetamiprid is an organic and highly toxic compound. Despite being widely used as a pesticide agent on a large scale, acetamiprid poses numerous health risks to living organisms, particularly humans. Herein, a strategy for the detection of acetamiprid in tea employing surface-enhanced Raman scattering (SERS) technology incorporated with a microfluidic chip was developed. Significantly, a seed-mediated growth approach was utilized to engineer Ag-coated tetrapod gold nanostars (core-shell Au@AgNSs) with four sharp tips. The synthesized Au@AgNSs showed an enhancement factor of 7.2 × 106. Solid works was used to figure out the two-channel microfluidic chip featuring four circular split hybrid structures, and COMSOL (Software for Multiphysics Simulation) was utilized to model the fusion effect between the substrate (Au@AgNSs) and the sample (acetamiprid). For the first time, the core-shell Au@AgNSs and acetamiprid were fused in the microfluidic channel to facilitate the detection of acetamiprid using SERS. The outcomes pointed out that the standard curve correlation coefficient between SERS intensity (876 cm-1) and the concentration of acetamiprid in tea specimens was calculated as 0.991, while the limit of detection (LOD) was 0.048 ng mL-1, which is well below the minimum limit set by the European Union (10 ng mL-1). Thus, the developed technique combining SERS and microfluidics demonstrated high potential for the rapid and efficient detection of acetamiprid in tea.


Subject(s)
Gold , Metal Nanoparticles , Neonicotinoids , Silver , Spectrum Analysis, Raman , Tea , Gold/chemistry , Tea/chemistry , Neonicotinoids/analysis , Spectrum Analysis, Raman/methods , Metal Nanoparticles/chemistry , Silver/chemistry , Limit of Detection , Microfluidic Analytical Techniques/methods , Microfluidic Analytical Techniques/instrumentation
9.
Reprod Toxicol ; 125: 108570, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38484946

ABSTRACT

Apilarnil, a bee-derived product originating from drone larvae, offers a range of advantageous properties for both humans and animals. It functions as an antioxidant, provides neuroprotection, boosts fertility, and has antiviral capabilities. Additionally, it is a provider of androgenic hormones. These beneficial functions are supported by its chemical composition, which comprises mineral salts, vitamins, carbs, lipids, hormones, and amino acids. The current study aimed to evaluate the ameliorative effect of apilarnil against Bisphenol A (BPA)-induced testicular toxicity in male adult rats. Forty-eight Wistar albino rats were randomly classified into six groups. The first, second, and third received olive oil, BPA at a dose of 50 mg/kg body weight (bwt), and apilarnil at a dose of 0.6 g/kg bwt, respectively. The fourth, fifth, and sixth groups received apilarnil with, before, or after BPA administration, respectively. Phytochemical analysis using included linear ion trap-ultra-performance liquid chromatography-tandem mass spectrometry (LTQ-UPLC-MS/MS) and global natural products social molecular networking (GNPS) revealed the presence of lysine, 10-hydroxy-(E)-2-dodecenoic acid, apigenin7-glucoside, testosterone, progesterone, and campesterol. BPA administration decreased serum level of follicle stimulating hormone (FSH), luteinizing hormone (LH), testosterone, glutathione (GSH) concentration, total sperm count, motility, and vitality. Additionally, BPA increased sperm abnormalities, malondialdehyde concentration (MDA), and decreased proliferating cell nuclear antigen (PCNA) expression. The treatment with apilarnil ameliorated BPA reproductive toxicity in rats which was indicated by increased serum testosterone levels, normalized serum levels of FSH and LH, and concentration of MDA and GSH activity. Moreover, apilarnil improved sperm count, motility, morphology, and PCNA expression. Apilarnil was found to enhance reproductive hormones, MDA levels, antioxidant activity, and PCNA expression.


Subject(s)
Antioxidants , Benzhydryl Compounds , Biological Products , Phenols , Adult , Animals , Humans , Male , Rats , Antioxidants/pharmacology , Antioxidants/metabolism , Biological Products/metabolism , Biological Products/pharmacology , Chromatography, Liquid , Follicle Stimulating Hormone , Glutathione/metabolism , Luteinizing Hormone , Oxidative Stress , Proliferating Cell Nuclear Antigen/metabolism , Rats, Wistar , Sperm Count , Tandem Mass Spectrometry , Testis , Testosterone
10.
Ecotoxicology ; 33(3): 305-324, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38446268

ABSTRACT

Nanotechnology has grown in importance in medicine, manufacturing, and consumer products. Nanoparticles (NPs) are also widely used in the field of insect pest management, where they show a variety of toxicological effects on insects. As a result, the primary goal of this review is to compile and evaluate available information on effects of NPs on insects, by use of a timely, bibliometric analysis. We also discussed the manufacturing capacity of NPs from insect tissues and the toxic effects of NPs on insects. To do so, we searched the Web of Science database for literature from 1995 to 2023 and ran bibliometric analyses with CiteSpace© and Bibliometrix©. The analyses covered 614 journals and identified 1763 relevant documents. We found that accumulation of NPs was one of the top trending topics. China, India, and USA had the most published papers. The most overall reported models of insects were those of Aedes aegypti (yellow fever mosquito), Culex quinquefasciatus (southern house mosquito), Bombyx mori (silk moth), and Anopheles stephensi (Asian malaria mosquito). The application and methods of fabrication of NPs using insect tissues, as well as the mechanism of toxicity of NPs on insects, were also reported. A uniform legal framework is required to allow nanotechnology to fully realize its potential while minimizing harm to living organisms and reducing the release of toxic metalloid nanoparticles into the environment.


Subject(s)
Aedes , Culex , Insecticides , Metal Nanoparticles , Animals , Insecticides/toxicity , Larva , Plant Extracts
11.
Fitoterapia ; 175: 105897, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38479618

ABSTRACT

Globally, obesity has become one of the major health problems. This study was conducted to evaluate the anti-obesity potential of Cymbopogon schoenanthus methanolic extract (CS) in rats. Fifty male Wistar rats of six to eight weeks old, 100-120 g body weight (BW) were randomly assigned into 5 groups (n = 10): The control group was fed a basal diet. CS-group was supplied with basal diet and orally given CS (200 mg/kg BW) for 12 weeks. HFD-group was fed a high-fat diet (HFD) for 18 weeks. HFD + CS-group was fed on HFD and CS HFD then CS-group was fed HFD for 12 weeks then shifted to basal diet and CS for another 6 weeks. Phytochemical analysis of CS indicated the presence of various terpenes and flavonoid compounds. Among the compounds characterized are quercetin, apigenin, luteolin, orientin, eudesmene, cymbopogonol, caffeic acid, coumaric acid, and linolenic acid. Supplementation of HFD significantly increased the body weight, levels of serum triacylglycerol, total cholesterol, very low-density lipoprotein, low-density lipo-protein (HDL), glucose, serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities. In addition, HFD up-regulated the protein expression of uncoupling protein (UCP)-1 in both brown and white adipose tissue; and the expression of hepatic mRNA of sterol regulatory element-binding protein (SREBP)-1c and SREBP-2. However, it decreased the serum level of HDL, and protein expression level of UCP-1 in both brown and white adipose tissue. Treatment of HFD-fed animals with CS extract either concurrently (HFD + CS-group), or after obesity induction (HFD then CS-group) significantly reversed all HFD-induced alterations in body weight; food intake; serum biochemical profile (including hyperglycemia, dyslipidemia); and tissue gene expressions. These results indicate that CS methanolic extract ameliorated HFD-induced obesity, serum biochemical, hepatic, and adipose tissue gene expression alterations. CS extract accomplished these effects mostly through its various identified bioactive compounds which have been proven to have anti-obesity and anti-diabetic activities.


Subject(s)
Anti-Obesity Agents , Cymbopogon , Diet, High-Fat , Dyslipidemias , Obesity , Plant Extracts , Rats, Wistar , Animals , Male , Obesity/drug therapy , Plant Extracts/pharmacology , Rats , Cymbopogon/chemistry , Dyslipidemias/drug therapy , Anti-Obesity Agents/pharmacology , Thermogenesis/drug effects , Lipogenesis/drug effects , Liver/drug effects , Liver/metabolism , Uncoupling Protein 1/metabolism , Phytochemicals/pharmacology
12.
Biol Sport ; 41(2): 221-241, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38524814

ABSTRACT

The rise of artificial intelligence (AI) applications in healthcare provides new possibilities for personalized health management. AI-based fitness applications are becoming more common, facilitating the opportunity for individualised exercise prescription. However, the use of AI carries the risk of inadequate expert supervision, and the efficacy and validity of such applications have not been thoroughly investigated, particularly in the context of diverse health conditions. The aim of the study was to critically assess the efficacy of exercise prescriptions generated by OpenAI's Generative Pre-Trained Transformer 4 (GPT-4) model for five example patient profiles with diverse health conditions and fitness goals. Our focus was to assess the model's ability to generate exercise prescriptions based on a singular, initial interaction, akin to a typical user experience. The evaluation was conducted by leading experts in the field of exercise prescription. Five distinct scenarios were formulated, each representing a hypothetical individual with a specific health condition and fitness objective. Upon receiving details of each individual, the GPT-4 model was tasked with generating a 30-day exercise program. These AI-derived exercise programs were subsequently subjected to a thorough evaluation by experts in exercise prescription. The evaluation encompassed adherence to established principles of frequency, intensity, time, and exercise type; integration of perceived exertion levels; consideration for medication intake and the respective medical condition; and the extent of program individualization tailored to each hypothetical profile. The AI model could create general safety-conscious exercise programs for various scenarios. However, the AI-generated exercise prescriptions lacked precision in addressing individual health conditions and goals, often prioritizing excessive safety over the effectiveness of training. The AI-based approach aimed to ensure patient improvement through gradual increases in training load and intensity, but the model's potential to fine-tune its recommendations through ongoing interaction was not fully satisfying. AI technologies, in their current state, can serve as supplemental tools in exercise prescription, particularly in enhancing accessibility for individuals unable to access, often costly, professional advice. However, AI technologies are not yet recommended as a substitute for personalized, progressive, and health condition-specific prescriptions provided by healthcare and fitness professionals. Further research is needed to explore more interactive use of AI models and integration of real-time physiological feedback.

13.
Nutrients ; 16(6)2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38542772

ABSTRACT

Preclinical studies have shown that the combination of Cistus × incanus L. and Scutellaria lateriflora L. extracts exerts beneficial effects on oral health against gingivitis. Thus, this study aimed to assess the tolerability of a chewing gum and its efficacy on gingivitis in a double-blind, placebo-controlled clinical trial. Enrolled subjects (n = 60, 18-70 years) were randomized to receive two chewing gums or a placebo daily for 3 months. At baseline (t0) and monthly (t1, t2, and t3) timepoints, the Quantitative Gingival Bleeding Index (QGBI), the Modified Gingival Index (MGI), and the Oral Health 15 items (OH-15)] were employed to assess potential improvements in gingivitis. Pain was self-quantified via the Visual Analogue Scale (VAS), and the Clinical Global Impression Scale for Severity of illness (CGI-S) helped in evaluating the oral general conditions. This study is listed on the ISRCTN registry. At t3, the QGBI, MGI, OH-15, VAS, and CGI-S values decreased in the treated but not in the placebo group (ß = 0.6 ± 0.1, t176 = 3.680, p < 0.001; ß = 0.87 ± 0.21, t115 = 4.263, p < 0.001; ß = 5.3 ± 2.5, t172 = 2.086, p = 0.038; ß = 3.16 ± 0.51, t88 = 6.253, p < 0.001; and ß = 1.09 ± 0.32, t83 = 3.419, p < 0.001, respectively). A significant improvement in gingival health occurred after a 3-month intervention with the chewing gums containing S. lateriflora and C. incanus extracts.


Subject(s)
Cistus , Gingivitis , Humans , Chewing Gum , Plant Extracts/adverse effects , Gingivitis/drug therapy , Double-Blind Method
14.
Food Res Int ; 178: 113934, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38309905

ABSTRACT

Bee pollen is hailed as a treasure trove of human nutrition and has progressively emerged as the source of functional food and medicine. This review conducts a compilation of nutrients and phytochemicals in bee pollen, with particular emphasis on some ubiquitous and unique phenolamides and flavonoid glycosides. Additionally, it provides a concise overview of the diverse health benefits and therapeutic properties of bee pollen, particularly anti-prostatitis and anti-tyrosinase effects. Furthermore, based on the distinctive structural characteristics of pollen walls, a substantial debate has persisted in the past concerning the necessity of wall-disruption. This review provides a comprehensive survey on the necessity of wall-disruption, the impact of wall-disruption on the release and digestion of nutrients, and wall-disruption techniques in industrial production. Wall-disruption appears effective in releasing and digesting nutrients and exploiting bee pollen's bioactivities. Finally, the review underscores the need for future studies to elucidate the mechanisms of beneficial effects. This paper will likely help us gain better insight into bee pollen to develop further functional foods, personalized nutraceuticals, cosmetics products, and medicine.


Subject(s)
Nutrients , Pollen , Bees , Humans , Animals , Pollen/chemistry , Flavonoids/analysis , Glycosides/analysis , Phytochemicals/analysis
15.
Nutrients ; 16(3)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38337678

ABSTRACT

Metabolic disorders, encompassing diabetes mellitus, cardiovascular diseases, gastrointestinal disorders, etc., pose a substantial global health threat, with rising morbidity and mortality rates. Addressing these disorders is crucial, as conventional drugs often come with high costs and adverse effects. This review explores the potential of royal jelly (RJ), a natural bee product rich in bioactive components, as an alternative strategy for managing metabolic diseases. RJ exhibits diverse therapeutic properties, including antimicrobial, estrogen-like, anti-inflammatory, hypotensive, anticancer, and antioxidant effects. This review's focus is on investigating how RJ and its components impact conditions like diabetes mellitus, cardiovascular disease, and gastrointestinal illnesses. Evidence suggests that RJ serves as a complementary treatment for various health issues, notably demonstrating cholesterol- and glucose-lowering effects in diabetic rats. Specific RJ-derived metabolites, such as 10-hydroxy-2-decenoic acid (10-HDA), also known as the "Queen bee acid," show promise in reducing insulin resistance and hyperglycemia. Recent research highlights RJ's role in modulating immune responses, enhancing anti-inflammatory cytokines, and suppressing key inflammatory mediators. Despite these promising findings, further research is needed to comprehensively understand the mechanisms underlying RJ's therapeutic effects.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Experimental , Gastrointestinal Diseases , Metabolic Diseases , Rats , Animals , Bees , Diabetes Mellitus, Experimental/drug therapy , Fatty Acids/therapeutic use , Gastrointestinal Diseases/drug therapy , Metabolic Diseases/drug therapy , Cardiovascular Diseases/drug therapy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
16.
J Agric Food Chem ; 72(10): 5089-5106, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38416110

ABSTRACT

Polyamines and their derivatives are ubiquitously present in free or conjugated forms in various foods from animal, plant, and microbial origins. The current knowledge of free polyamines in foods and their contents is readily available; furthermore, conjugated polyamines generate considerable recent research interest due to their potential health benefits. The structural diversity of conjugated polyamines results in challenging their qualitative and quantitative analysis in food. Herein, we review and summarize the knowledge published on polyamines and their derivatives in foods, including their identification, sources, quantities, and health benefits. Particularly, facing the inherent challenges of isomer identification in conjugated polyamines, this paper provides a comprehensive overview of conjugated polyamines' structural characteristics, including the cleavage patterns and characteristic ion fragments of MS/MS for isomer identification. Free polyamines are present in all types of food, while conjugated polyamines are limited to plant-derived foods. Spermidine is renowned for antiaging properties, acclaimed as antiaging vitamins. Conjugated polyamines highlight their anti-inflammatory properties and have emerged as the mainstream drugs for antiprostatitis. This paper will likely help us gain better insight into polyamines and their derivatives to further develop functional foods and personalized nutraceuticals.


Subject(s)
Polyamines , Tandem Mass Spectrometry , Animals , Spermidine , Plants , Spermine
17.
J Am Chem Soc ; 146(10): 6706-6720, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38421812

ABSTRACT

Two-dimensional (2D) halide perovskites are exquisite semiconductors with great structural tunability. They can incorporate a rich variety of organic species that not only template their layered structures but also add new functionalities to their optoelectronic characteristics. Here, we present a series of new methylammonium (CH3NH3+ or MA)-based 2D Ruddlesden-Popper perovskites templated by dimethyl carbonate (CH3OCOOCH3 or DMC) solvent molecules. We report the synthesis, detailed structural analysis, and characterization of four new compounds: MA2(DMC)PbI4 (n = 1), MA3(DMC)Pb2I7 (n = 2), MA4(DMC)Pb3I10 (n = 3), and MA3(DMC)Pb2Br7 (n = 2). Notably, these compounds represent unique structures with MA as the sole organic cation both within and between the perovskite sheets, while DMC molecules occupy a tight space between the MA cations in the interlayer. They form hydrogen-bonded [MA···DMC···MA]2+ complexes that act as spacers, preventing the perovskite sheets from condensing into each other. We report one of the shortest interlayer distances (∼5.7-5.9 Å) in solvent-incorporated 2D halide perovskites. Furthermore, the synthesized crystals exhibit similar optical characteristics to other 2D perovskite systems, including narrow photoluminescence (PL) signals. The density functional theory (DFT) calculations confirm their direct-band-gap nature. Meanwhile, the phase stability of these systems was found to correlate with the H-bond distances and their strengths, decreasing in the order MA3(DMC)Pb2I7 > MA4(DMC)Pb3I10 > MA2(DMC)PbI4 ∼ MA3(DMC)Pb2Br7. The relatively loosely bound nature of DMC molecules enables us to design a thermochromic cell that can withstand 25 cycles of switching between two colored states. This work exemplifies the unconventional role of the noncharged solvent molecule in templating the 2D perovskite structure.

18.
Chem Biodivers ; 21(5): e202400085, 2024 May.
Article in English | MEDLINE | ID: mdl-38329156

ABSTRACT

A lesser-known bee product called drone brood homogenate (DBH, apilarnil) has recently attracted scientific interest for its chemical and biological properties. It contains pharmacologically active compounds that may have neuroprotective, antioxidant, fertility-enhancing, and antiviral effects. Unlike other bee products, the chemical composition of bee drone larva is poorly studied. This study analyzed the chemical compostion of apilarnil using several methods. These included liquid chromatography-mass spectrometry (LC-MS/MS) and a combination of gas chromatography/mass spectrometry with solid phase micro-extraction (SPME/GC-MS). Additionally, antioxidant activity of the apilarnil was assessed using 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. A chemical assessment of apilarnil showed that it has 6.3±0.00, 74.67±0.10 %, 3.65±0.32 %, 8.80±1.01 %, 13.16±0.94 %, and 8.79±0.49 % of pH, moisture, total lipids, proteins, flavonoids, and carbohydrates, respectively. LC-MS/MS analysis and molecular networking (GNPS) of apilarnil exhibited 44 compounds, including fatty acids, flavonoids, glycerophospholipids, alcohols, sugars, amino acids, and steroids. GC-MS detected 30 volatile compounds in apilarnil, mainly esters (24 %), ketones (23.84 %), ethers (15.05 %), alcohols (11.41 %), fatty acids (10.06), aldehydes (6.73 %), amines (5.46), and alkene (5.53 %). The antioxidant activity of apilarnil was measured using DPPH with an IC50 of 179.93±2.46 µg/ml.


Subject(s)
Antioxidants , Biphenyl Compounds , Bees , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Animals , Biphenyl Compounds/antagonists & inhibitors , Gas Chromatography-Mass Spectrometry , Picrates/antagonists & inhibitors , Tandem Mass Spectrometry , Chromatography, Liquid , Solid Phase Microextraction
19.
Biol Methods Protoc ; 9(1): bpad027, 2024.
Article in English | MEDLINE | ID: mdl-38229687

ABSTRACT

Acute leukemia (AL) is a critical neoplasm of white blood cells with two main subtypes: acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). This study is focused on understanding the association of the preleukemic disease aplastic anemia (APA) with ALL and AML at metallomic level, using healthy subjects as a control. In this study, a validated and efficient inductively coupled plasma-mass spectrometry/MS-based workflow was employed to profile a total of 13 metallomic features. The study encompassed 41 patients with AML, 62 patients with ALL, 46 patients with APA, and 55 age-matched healthy controls. The metallomic features consisted of eight essential elements (Ca, Co, Cu, Fe, Mg, Mn, Se, and Zn) and five non-essential/toxic elements (Ag, Cd, Cr, Ni, and Pb). Six out of the 13 elements were found to be substantially different (P < .05) using absolute concentrations between serum samples of AL (ALL and AML) and preleukemia (APA) patients in comparison with healthy subjects. Elements including magnesium, calcium, iron, copper, and zinc were upregulated and only one element (chromium) was downregulated in serum samples of disease when compared with healthy subjects. Through the utilization of both univariate tests and multivariate classification modeling, it was determined that chromium exhibited a progressive behavior among the studied elements. Specifically, chromium displayed a sequential upregulation from healthy individuals to preleukemic disease (APA), and ultimately in patients diagnosed with ALL. Overall, metallomic-based biomarkers may have the utility to predict the association of APA with ALL.

20.
RSC Adv ; 14(2): 1018-1033, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38174269

ABSTRACT

In the present work, a small library of novel pyrazolinyl-acyl thiourea (5a-j) was designed and synthesized through a multistep sequence and the synthesized compounds were screened for their antifungal, antibacterial and antioxidant activities as well as urease, amylase and α-glucosidase inhibitory activities. The synthesized series (5a-o) was characterized using a combination of spectroscopic techniques, including FT-IR, 1H NMR and 13C NMR. All compounds (5a-j) were found to have significant potency against urease, α-glucosidase, α-amylase, and DPPH. The synthesized compounds were also screened for potential antibacterial and anti-fungal inhibition activities. IC50 values for all the prepared compounds for urease, α-glucosidase, amylase, and DPPH inhibition were determined and derivatives 5b and 5g were found to be the most potent urease inhibitors with IC50 values of 54.2 ± 0.32 and 43.6 ± 0.25 µM, respectively. Whilst compound 5b (IC50 = 68.3 ± 0.11 µM) is a potent α-glucosidase inhibitor, compound 5f (90.3 ± 1.08 µM) is a potent amylase inhibitor and compound 5b (103.4 ± 1.15 µM) is a potent antioxidant. The different substitutions on the phenyl ring were the basis for structure-activity relationship (SAR) study. The molecular docking study was performed for the confirmation of binding interactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...