Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 12(41): 46963-46971, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-32924422

ABSTRACT

Biological cells often interact with the environment through carpets of microscopic hair-like cilia. These elastic structures are known to beat in a synchronized wavy fashion called metachronal motion to produce fluid transport. Metachronal motion emerges due to a phase difference between beating cycles of neighboring cilia and appears as traveling waves propagating along the ciliary carpet. We demonstrate submerged in water microscale magnetic cilia that are externally actuated to beat in a metachronal fashion. Two approaches are used to induce coordinated phase differences among the beating cilia. In the first case, we fabricate cilia with an imposed gradient of geometrical properties that are subject to a rotating uniform magnetic field. In the second scenario, a ciliary array is composed of identical cilia that experience a magnetic field that varies spatiotemporally. We demonstrate that magnetic cilia can achieve symplectic, antiplectic, and leoplectic metachrony.


Subject(s)
Cilia/chemistry , Magnetic Fields , Particle Size , Surface Properties
2.
Soft Matter ; 14(19): 3689-3693, 2018 May 16.
Article in English | MEDLINE | ID: mdl-29737998

ABSTRACT

Organisms use hair-like cilia that beat in a metachronal fashion to actively transport fluid and suspended particles. Metachronal motion emerges due to a phase difference between beating cycles of neighboring cilia and appears as traveling waves propagating along ciliary carpet. In this work, we demonstrate biomimetic artificial cilia capable of metachronal motion. The cilia are micromachined magnetic thin filaments attached at one end to a substrate and actuated by a uniform rotating magnetic field. We show that the difference in magnetic cilium length controls the phase of the beating motion. We use this property to induce metachronal waves within a ciliary array and explore the effect of operation parameters on the wave motion. The metachronal motion in our artificial system is shown to depend on the magnetic and elastic properties of the filaments, unlike natural cilia, where metachronal motion arises due to fluid coupling. Our approach enables an easy integration of metachronal magnetic cilia in lab-on-a-chip devices for enhanced fluid and particle manipulations.


Subject(s)
Biomimetics , Cilia/metabolism , Magnetic Fields , Movement
3.
Microsyst Nanoeng ; 4: 11, 2018.
Article in English | MEDLINE | ID: mdl-31057899

ABSTRACT

One of the vital functions of naturally occurring cilia is fluid transport. Biological cilia use spatially asymmetric strokes to generate a net fluid flow that can be utilized for feeding, swimming, and other functions. Biomimetic synthetic cilia with similar asymmetric beating can be useful for fluid manipulations in lab-on-chip devices. In this paper, we demonstrate the microfluidic pumping by magnetically actuated synthetic cilia arranged in multi-row arrays. We use a microchannel loop to visualize flow created by the ciliary array and to examine pumping for a range of cilia and microchannel parameters. We show that magnetic cilia can achieve flow rates of up to 11 µl/min with the pressure drop of ~1 Pa. Such magnetic ciliary array can be useful in microfluidic applications requiring rapid and controlled fluid transport.

4.
Lab Chip ; 17(18): 3138-3145, 2017 09 12.
Article in English | MEDLINE | ID: mdl-28805871

ABSTRACT

Most microorganisms use hair-like cilia with asymmetric beating to perform vital bio-physical processes. In this paper, we demonstrate a novel fabrication method for creating magnetic artificial cilia capable of such a biologically inspired asymmetric beating pattern essential for inducing microfluidic transport at low Reynolds number. The cilia are fabricated using a lithographic process in conjunction with deposition of magnetic nickel-iron permalloy to create flexible filaments that can be manipulated by varying an external magnetic field. A rotating permanent magnet is used to actuate the cilia. We examine the kinematics of a cilium and demonstrate that the cilium motion is defined by an interplay among elastic, magnetic, and viscous forces. Specifically, the forward stroke is induced by the rotation of the magnet which bends the cilium, whereas the recovery stroke is defined by the straightening of the deformed cilium, releasing accumulated elastic potential energy. This difference in dominating forces acting during the forward stroke and the recovery stroke leads to an asymmetric beating pattern of the cilium. Such magnetic cilia can find applications in microfluidic pumping, mixing, and other fluid handling processes.


Subject(s)
Artificial Cells , Cilia/physiology , Magnets , Microfluidics , Models, Biological , Biomechanical Phenomena , Equipment Design , Microfluidics/instrumentation , Microfluidics/methods , Motion , Rotation , Viscosity
5.
Nat Commun ; 5: 3342, 2014.
Article in English | MEDLINE | ID: mdl-24531275

ABSTRACT

Internal functionalization of single-walled nanotubes is an attractive, yet difficult challenge in nanotube materials chemistry. Here we report single-walled metal oxide nanotubes with covalently bonded primary amine moieties on their inner wall, synthesized through a one-step approach. Conclusive molecular-level structural information on the amine-functionalized nanotubes is obtained through multiple solid-state techniques. The amine-functionalized nanotubes maintain a high carbon dioxide adsorption capacity while significantly suppressing the adsorption of methane and nitrogen, thereby leading to a large enhancement in adsorption selectivity over unfunctionalized nanotubes (up to four-fold for carbon dioxide/methane and ten-fold for carbon dioxide/nitrogen). The successful synthesis of single-walled nanotubes with functional, covalently-bound organic moieties may open up possibilities for new nanotube-based applications that are currently inaccessible to carbon nanotubes and other related materials.

6.
J Chem Phys ; 136(6): 065105, 2012 Feb 14.
Article in English | MEDLINE | ID: mdl-22360225

ABSTRACT

We investigate unforced and forced translocation of a Rouse polymer (in the absence of hydrodynamic interactions) through a silicon nitride nanopore by three-dimensional Langevin dynamics simulations, as a function of pore dimensions and applied voltage. Our nanopore model consists of an atomistically detailed nanopore constructed using the crystal structure of ß-Si(3)N(4). We also use realistic parameters in our simulation models rather than traditional dimensionless quantities. When the polymer length is much larger than the pore length, we find the translocation time versus chain length scales as τ ∼ N(2+ν) for the unforced case and as τ ∼ N((1+2ν)/(1+ν)) for the forced case. Our results agree with theoretical predictions which indicate that memory effects and tension on the polymer chain play an important role during the translocation process. We also find that the scaling exponents are highly dependent on the applied voltage (force). When the length of the polymer is on the order of the length of the pore, we do not find a continuous scaling law, but rather scaling exponents that increase as the length of the polymer increases. Finally, we investigate the scaling behavior of translocation time versus applied voltage for different polymer and pore lengths. For long pores, we obtain the theoretical scaling law of τ ∼ 1/V(α), where α ≅ 1 for all voltages and polymer lengths. For short pores, we find that α decreases for very large voltages and/or small polymer lengths, indicating that the value of α = 1 is not universal. The results of our simulations are discussed in the context of experimental measurements made under different conditions and with differing pore geometries.


Subject(s)
Nanopores/ultrastructure , Polymers/chemistry , Silicon Compounds/chemistry , Computer Simulation , DNA/chemistry , Diffusion , Electricity , Models, Chemical , Models, Molecular , Motion
7.
Nanotechnology ; 21(32): 325501, 2010 Aug 13.
Article in English | MEDLINE | ID: mdl-20647628

ABSTRACT

A novel experimental approach is used for studying the response of ethanol-suspended SnO(2) nanobelts under the influence of low frequency ac electric fields. The electrically generated forces are estimated by analyzing the angular motion of the nanobelt, induced by repulsive forces originating predominantly from negative dielectrophoresis (DEP) on planar microelectrodes. The nanobelt motion is experimentally recorded in real time in the low frequency range (<100 kHz) and the angular velocities are calculated. A simple analytical model of force balance between the electrical forces and fluidic drag for long nano-objects is developed and used to deduce estimates of the frequency-dependent DEP force and torque magnitudes from the angular velocity data. Additional experiments, performed in a parallel plate electrode configuration in a fluidic channel to investigate the effect of dc and very low frequency ac (approximately Hz) electric fields, indicate the presence of electrophoresis in the ethanol-suspended SnO(2) nanobelts. The experimentally observed nanobelt motion is analyzed using the equation of motion, and an order-of-magnitude estimate of the nanobelt surface charge density is obtained.

8.
Anal Chem ; 82(6): 2204-12, 2010 Mar 15.
Article in English | MEDLINE | ID: mdl-20151680

ABSTRACT

This article presents results of detailed and direct real-time observations of the wide variety of SnO(2) nanobelt motions induced by ac dielectrophoresis (DEP) in an innovative microfluidic setup. High ac electric fields were generated on a gold microelectrode (approximately 20 microm electrode gap) array, patterned on a glass substrate and covered by a approximately 10 microm tall polydimethylsiloxane (PDMS) microchannel. Ethanol suspended SnO(2) nanobelts were introduced into the microchannel, and the DEP experiments were performed. Negative DEP (repulsion) of the nanobelts was observed in the low-frequency range (<100 kHz) of the applied electric field, which caused rigid body motion as well as deformation of the nanobelts. The negative DEP effect observed in ethanol is unusual and contrary to what is predicted by the Clausius-Mossotti factor (using bulk SnO(2) conductivity and permittivity values) of the dipole approximation theory. In the high-frequency range (approximately 1-10 MHz), positive DEP (attraction) of the nanobelts was observed. Pearl chain formation involving short nanobelts and particles was also observed in the two DEP regimes.

9.
J Am Chem Soc ; 130(44): 14404-5, 2008 Nov 05.
Article in English | MEDLINE | ID: mdl-18841964

ABSTRACT

In this work we demonstrate the concept of stress-induced chemical detection using metal-organic frameworks (MOFs) by integrating a thin film of the MOF HKUST-1 with a microcantilever surface. The results show that the energy of molecular adsorption, which causes slight distortions in the MOF crystal structure, can be converted to mechanical energy to create a highly responsive, reversible, and selective sensor. This sensor responds to water, methanol, and ethanol vapors, but yields no response to either N2 or O2. The magnitude of the signal, which is measured by a built-in piezoresistor, is correlated with the concentration and can be fitted to a Langmuir isotherm. Furthermore, we show that the hydration state of the MOF layer can be used to impart selectivity to CO2. Finally, we report the first use of surface-enhanced Raman spectroscopy to characterize the structure of a MOF film. We conclude that the synthetic versatility of these nanoporous materials holds great promise for creating recognition chemistries to enable selective detection of a wide range of analytes.

10.
Anal Chem ; 79(13): 4769-77, 2007 Jul 01.
Article in English | MEDLINE | ID: mdl-17521168

ABSTRACT

A batch fabrication process at the wafer-level integrating ring microelectrodes into atomic force microscopy (AFM) tips is presented. The fabrication process results in bifunctional scanning probes combining atomic force microscopy with scanning electrochemical microscopy (AFM-SECM) with a ring microelectrode integrated at a defined distance above the apex of the AFM tip. Silicon carbide is used as AFM tip material, resulting in reduced mechanical tip wear for extended usage. The presented approach for the probe fabrication is based on batch processing using standard microfabrication techniques, which provides bifunctional scanning probes at a wafer scale and at low cost. Additional benefits of batch fabrication include the high processing reproducibility, uniformity, and tuning of the physical properties of the cantilever for optimized AFM dynamic mode operation. The performance of batch-fabricated bifunctional probes was demonstrated by simultaneous imaging micropatterned platinum structures at a silicon dioxide substrate in intermittent (dynamic) and contact mode, respectively, and feedback mode SECM. In both, intermittent and contact mode, the bifunctional probes provided reliable correlated electrochemical and topographical data. In addition, simulations of the diffusion-limited steady-state currents at the integrated electrode using finite element methods were performed for characterizing the developed probes.


Subject(s)
Biosensing Techniques/methods , Microscopy, Atomic Force/methods , Microscopy, Scanning Probe/methods , Platinum/chemistry , Silicon Dioxide/chemistry , Biosensing Techniques/instrumentation , Diffusion , Electrochemistry , Equipment Design , Microelectrodes , Microscopy, Atomic Force/instrumentation , Microscopy, Scanning Probe/instrumentation , Reproducibility of Results , Sensitivity and Specificity , Surface Properties
11.
Biosens Bioelectron ; 20(4): 887-94, 2004 Nov 01.
Article in English | MEDLINE | ID: mdl-15522606

ABSTRACT

This research is directed towards developing a more sensitive and rapid electrochemical sensor for enzyme labeled immunoassays by coupling redox cycling at interdigitated electrode arrays (IDA) with the enzyme label beta-galactosidase. Coplanar and comb IDA electrodes with a 2.4 microm gap were fabricated and their redox cycling currents were measured. ANSYS was used to model steady state currents for electrodes with different geometries. Comb IDA electrodes enhanced the signal about three times more than the coplanar IDAs, which agreed with the results of the simulation. Magnetic microbead-based enzyme assay, as a typical example of biochemical detection, was done using the comb and coplanar IDAs. The enzymes could be placed close to the sensing electrodes (approximately 10 microm for the comb IDAs) and detection took less than 1 min with a limit of detection of 70 amol of beta-galactosidase. We conclude that faster and more sensitive assays can be achieved with the comb IDA.


Subject(s)
Biosensing Techniques/instrumentation , Electrochemistry/instrumentation , Enzyme-Linked Immunosorbent Assay/instrumentation , Microelectrodes , Models, Chemical , beta-Galactosidase/analysis , beta-Galactosidase/chemistry , Biosensing Techniques/methods , Computer Simulation , Computer-Aided Design , Electrochemistry/methods , Enzyme-Linked Immunosorbent Assay/methods , Enzymes, Immobilized/chemistry , Equipment Design , Equipment Failure Analysis , Immunomagnetic Separation/instrumentation , Immunomagnetic Separation/methods , Microspheres , Reproducibility of Results , Sensitivity and Specificity
12.
Anal Chem ; 76(10): 2700-7, 2004 May 15.
Article in English | MEDLINE | ID: mdl-15144178

ABSTRACT

Viruses are one of four classes of biothreat agents, and bacteriophage MS2 has been used as a simulant for biothreat viruses, such as smallpox. A paramagnetic bead-based electrochemical immunoassay has been developed for detecting bacteriophage MS2. The immunoassay sandwich was made by attaching a biotinylated rabbit anti-MS2 IgG to a streptavidin-coated bead, capturing the virus, and then attaching a rabbit anti-MS2 IgG-beta-galactosidase conjugate to another site on the virus. beta-Galactosidase converts p-aminophenyl galactopyranoside (PAPG) to p-aminophenol (PAP). PAPG is electroinactive at the potential at which PAP is oxidized to p-quinone imine (PQI), so the current resulting from the oxidation of PAP to PQI is directly proportional to the concentration of antigen in the sample. The immunoassay was detected with rotating disk electrode (RDE) amperometry and an interdigitated array (IDA) electrode. With an applied potential of +290 mV vs Ag/AgCl and a rotation rate of 3000 rpm, the detection limit was 200 ng/mL MS2 or 3.2 x 10(10) viral particles/mL with RDE amperometry. A trench IDA electrode was incorporated into a poly(dimethyl siloxane) channel, within which beads were collected, incubated with PAPG, and PAP generation was detected. The two working electrodes were held at +290 and -300 mV vs Ag/AgCl, and electrochemical recycling of the PAP/PQI couple by the IDA electrode lowered the limit of detection to 90 ng/mL MS2, or 1.5 x 10(10) MS2 particles/mL.


Subject(s)
Electrochemistry/methods , Levivirus/isolation & purification , Aminophenols/analysis , Animals , Antibodies, Anti-Idiotypic/immunology , Biotinylation , Electrochemistry/instrumentation , Electrodes , Galactose/chemistry , Imines/chemistry , Immunoassay/methods , Levivirus/immunology , Oxidation-Reduction , Quinones/chemistry , Rabbits , Smallpox/virology , Streptavidin/chemistry , Time Factors , beta-Galactosidase/metabolism
13.
Anal Biochem ; 328(2): 113-22, 2004 May 15.
Article in English | MEDLINE | ID: mdl-15113686

ABSTRACT

The objective of this study was to develop a sensitive and miniaturized immunoassay by coupling a microbead-based immunoassay with an interdigitated array (IDA) electrode. An IDA electrode amplifies the signal by recycling an electrochemically redox-reversible molecule. The microfabricated platinum electrodes had 25 pairs of electrodes with 1.6-microm gaps and 2.4-microm widths. An enzyme-labeled sandwich immunoassay on paramagnetic microbeads with mouse IgG as the analyte and beta-galactosidase as the enzyme label was used as the model system. beta-Galactosidase converted p-aminophenyl beta-D-galactopyranoside to p-aminophenol (PAP). This enzyme reaction was measured continuously by positioning the microbeads near the electrode surface with a magnet. Electrochemical recycling occurred with PAP oxidation to p-quinone imine (PQI) at +290 mV followed by PQI reduction to PAP at -300 mV vs Ag/AgCl. Dual-electrode detection amplified the signal fourfold compared to single-electrode detection, and the recycling efficiency reached 87%. A calibration curve of PAP concentration vs anodic current was linear between 10(-4) and 10(-6)M. A signal from 1000 beads in a 20-microL drop was detectable and the immunoassay was complete within 10 min with a detection limit of 3.5x10(-15)mol mouse IgG.


Subject(s)
Electrochemistry/methods , Electrodes , Immunoassay/methods , Immunoglobulin G/analysis , Aminophenols/analysis , Animals , Calibration , Imines/chemistry , Immunoenzyme Techniques , Mice , Microchemistry , Oxidation-Reduction , Quinones/chemistry , Time Factors , beta-Galactosidase/chemistry , beta-Galactosidase/metabolism
14.
Nature ; 324(6097): 549-551, 1986 Dec 11.
Article in English | MEDLINE | ID: mdl-29517728

ABSTRACT

In recent studies on small pyroelectric thermal anemometers with roughened surfaces we showed that one of the most widely used heat transfer models1,2 yielded calculated anemometer responses for flow and geometric behaviour that agreed functionally with observations, but were significantly smaller than the experimental data3-5. As the first stage in investigating the role of small structures in heat transfer, we initiated a study of emittance from deep gratings. Here we report measurements at 400 °C of infrared (3 µm⩽λ⩽14 µm), normal, s- and p-polarized spectral emittances of 45 µm deep, near square-wave gratings of heavily phosphorus doped (110) silicon (P content ∼5 × 1019 cm-3). The grating surface repeat scales, Λ, were 10, 14, 18 and 22µm, yielding a range of Λ/λ from 0.14 to 7.33. The s-polarization vector was parallel to the grating slots. Both s and p spectral emittances had pronounced resonant periodicities with a characteristic length of ∼42 µm. A reasonable explanation for this behaviour is the presence of standing waves in the air slots perpendicular to the silicon surface similar to those in an organ pipe. While the resonant amplitude of the s polarization does not depend significantly on Λ it does for the p polarization. No explanation for the Λ dependence of the p polarization is known.

SELECTION OF CITATIONS
SEARCH DETAIL
...