Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol In Vitro ; 52: 189-194, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29933103

ABSTRACT

Human OATP1B1 is highly expressed at the basolateral membrane of the hepatocyte. It plays an important role in the sodium-independent transport of bile acids and bile salts and contributes to the systemic clearance of many drugs. In this study, the interaction of at least one representative of all major chemical classes of bile acids and bile salts, which include the bile acid chenodeoxycholate (CDC), monovalent (amidated) bile salts glycochenodeoxycholate (GCDC), taurochenodeoxycholate (TCDC) and taurocholate (TC), a sulfated bile acid 3-sulfo-chenodeoxycholate (3S-CDC) and a divalent (amidated and sulfated) bile salt 3-sulfo-glycolithocholate (3S-GLC) were tested with OATP1B1 overexpressed in HEK293 cells. All bile acid derivatives except for CDC showed an efficient transport by OATP1B1. 3S-GLC gave the lowest KM (0.708 ±â€¯0.125 µM) and 3S-CDC showed the highest Vmax value (158 ±â€¯87.3 pmol/mg protein/min). The ranking of Clint values (3S-GLC > 3S-CDC > TCDC > GCDC > TC) also showed a preference for sulfated derivatives. In summary, human OATP1B1 transports sulfate esters of bile acids and bile salts more efficiently than monovalent bile salts.


Subject(s)
Bile Acids and Salts/metabolism , Liver-Specific Organic Anion Transporter 1/metabolism , HEK293 Cells , Humans
2.
Toxicol In Vitro ; 46: 189-193, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29024779

ABSTRACT

The transport of bile acids facilitated by NTCP is an important factor in establishing bile flow. In this study, we examine the kinetics associated with human NTCP-dependent transport of two quantitatively important bile acids comprising the human bile acid pool, chenodeoxycholic acid and glycine-chenodeoxycholate, and secondary bile salt, 3-sulfo-glycolithocholate of potential toxicological significance. The study employed human NTCP overexpressing Chinese Hamster Ovary cells and results compared with taurocholate, a prototypical bile salt commonly used in transporter studies. GCDC and 3S-GLC but not CDCA were transported by NTCP. The efficient uptake of GCDC, TCA and 3S-GLC by NTCP enabled the determination of kinetics. GCDC displayed a lower KM (0.569±0.318µM) than TCA (6.44±3.83µM) and 3S-GLC (3.78±1.17µM). The apparent CLint value for GCDC was 20-fold greater (153±53µl/mg protein/min) than the apparent CLint for TCA (6.92±4.72µl/mg protein/min) and apparent CLint for 3S-GLC (8.05±1.33µl/mg protein/min). These kinetic results provide important complementary data on the substrate selectivity and specificity of NTCP to transport bile acids. NTCP transports GCDC with greater efficiency than TCA and has the same efficacy for 3S-GLC and TCA.


Subject(s)
Bile Acids and Salts/metabolism , Organic Anion Transporters, Sodium-Dependent/metabolism , Symporters/metabolism , Animals , Biological Transport , CHO Cells , Cricetinae , Cricetulus , Hepatocytes/metabolism , Humans , Kinetics , Organic Anion Transporters, Sodium-Dependent/genetics , Sodium , Symporters/genetics
3.
Br J Clin Pharmacol ; 83(12): 2813-2820, 2017 12.
Article in English | MEDLINE | ID: mdl-28800383

ABSTRACT

AIMS: Cathepsin C (CTSC) is necessary for the activation of several serine proteases including neutrophil elastase (NE), cathepsin G and proteinase 3. GSK2793660 is an oral, irreversible inhibitor of CTSC that is hypothesized to provide an alternative route to achieve NE inhibition and was tested in a Phase I study. METHODS: Single escalating oral doses of GSK2793660 from 0.5 to 20 mg or placebo were administered in a randomized crossover design to healthy male subjects; a separate cohort received once daily doses of 12 mg or placebo for 21 days. Data were collected on safety, pharmacokinetics, CTSC enzyme inhibition and blood biomarkers. RESULTS: Single, oral doses of GSK2793660 were able to dose-dependently inhibit whole blood CTSC activity. Once daily dosing of 12 mg GSK2793660 for 21 days achieved ≥90% inhibition (95% CI: 56, 130) of CTSC within 3 h on day 1. Only modest reductions of whole blood enzyme activity of approximately 20% were observed for NE, cathepsin G and proteinase 3. Seven of 10 subjects receiving repeat doses of GSK2793660 manifested epidermal desquamation on palmar and plantar surfaces beginning 7-10 days after dosing commencement. There were no other clinically important safety findings. CONCLUSIONS: GSK2793660 inhibited CTSC activity but not the activity of downstream neutrophil serine proteases. The palmar-plantar epidermal desquamation suggests a previously unidentified role for CTSC or one of its target proteins in the maintenance and integrity of the epidermis at these sites, with some similarities to the phenotype of CTSC-deficient humans.


Subject(s)
Cathepsin C/antagonists & inhibitors , Dipeptides/adverse effects , Epithelial Cells/drug effects , Protease Inhibitors/adverse effects , Skin/drug effects , Administration, Oral , Adult , Cathepsin C/metabolism , Cross-Over Studies , Dipeptides/administration & dosage , Dose-Response Relationship, Drug , Drug Administration Schedule , Epithelial Cells/pathology , Healthy Volunteers , Humans , Male , Middle Aged , Protease Inhibitors/administration & dosage , Skin/pathology , Time Factors , Treatment Outcome , Young Adult
4.
Bioorg Med Chem Lett ; 23(24): 6890-6, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-24269482

ABSTRACT

This Letter describes the discovery of GSK189254 and GSK239512 that were progressed as clinical candidates to explore the potential of H3 receptor antagonists as novel therapies for the treatment of Alzheimer's disease and other dementias. By carefully controlling the physicochemical properties of the benzazepine series and through the implementation of an aggressive and innovative screening strategy that employed high throughput in vivo assays to efficiently triage compounds, the medicinal chemistry effort was able to rapidly progress the benzazepine class of H3 antagonists through to the identification of clinical candidates with robust in vivo efficacy and excellent developability properties.


Subject(s)
Benzazepines/chemistry , Histamine H3 Antagonists/chemistry , Receptors, Histamine H3/chemistry , Animals , Benzazepines/pharmacokinetics , Dogs , Half-Life , Haplorhini , Histamine H3 Antagonists/chemical synthesis , Histamine H3 Antagonists/pharmacokinetics , Humans , Male , Microsomes, Liver/metabolism , Niacinamide/analogs & derivatives , Niacinamide/chemistry , Niacinamide/pharmacokinetics , Protein Binding , Rats , Rats, Sprague-Dawley , Receptors, Histamine H3/metabolism , Structure-Activity Relationship
5.
J Pharmacol Exp Ther ; 321(3): 1032-45, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17327487

ABSTRACT

6-[(3-Cyclobutyl-2,3,4,5-tetrahydro-1H-3-benzazepin-7-yl)oxy]-N-methyl-3-pyridinecarboxamide hydrochloride (GSK189254) is a novel histamine H(3) receptor antagonist with high affinity for human (pK(i) = 9.59 -9.90) and rat (pK(i) = 8.51-9.17) H(3) receptors. GSK189254 is >10,000-fold selective for human H(3) receptors versus other targets tested, and it exhibited potent functional antagonism (pA(2) = 9.06 versus agonist-induced changes in cAMP) and inverse agonism [pIC(50) = 8.20 versus basal guanosine 5'-O-(3-[(35)S]thio)triphosphate binding] at the human recombinant H(3) receptor. In vitro autoradiography demonstrated specific [(3)H]GSK189254 binding in rat and human brain areas, including cortex and hippocampus. In addition, dense H(3) binding was detected in medial temporal cortex samples from severe cases of Alzheimer's disease, suggesting for the first time that H(3) receptors are preserved in late-stage disease. After oral administration, GSK189254 inhibited cortical ex vivo R-(-)-alpha-methyl[imidazole-2,5(n)-(3)H]histamine dihydrochloride ([(3)H]R-alpha-methylhistamine) binding (ED(50) = 0.17 mg/kg) and increased c-Fos immunoreactivity in prefrontal and somatosensory cortex (3 mg/kg). Microdialysis studies demonstrated that GSK189254 (0.3-3 mg/kg p.o.) increased the release of acetylcholine, noradrenaline, and dopamine in the anterior cingulate cortex and acetylcholine in the dorsal hippocampus. Functional antagonism of central H(3) receptors was demonstrated by blockade of R-alpha-methylhistamine-induced dipsogenia in rats (ID(50) = 0.03 mg/kg p.o.). GSK189254 significantly improved performance of rats in diverse cognition paradigms, including passive avoidance (1 and 3 mg/kg p.o.), water maze (1 and 3 mg/kg p.o.), object recognition (0.3 and 1 mg/kg p.o.), and attentional set shift (1 mg/kg p.o.). These data suggest that GSK189254 may have therapeutic potential for the symptomatic treatment of dementia in Alzheimer's disease and other cognitive disorders.


Subject(s)
Benzazepines/pharmacology , Brain/drug effects , Histamine Antagonists/pharmacology , Niacinamide/analogs & derivatives , Nootropic Agents/pharmacology , Receptors, Histamine H3/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/physiopathology , Animals , Benzazepines/metabolism , Benzazepines/pharmacokinetics , Binding, Competitive , Brain/metabolism , Brain/pathology , Cell Line , Dogs , Histamine Agonists/metabolism , Histamine Agonists/pharmacokinetics , Histamine Agonists/pharmacology , Histamine Antagonists/metabolism , Histamine Antagonists/pharmacokinetics , Humans , Male , Maze Learning/drug effects , Mice , Middle Aged , Neurotransmitter Agents/metabolism , Niacinamide/metabolism , Niacinamide/pharmacokinetics , Niacinamide/pharmacology , Nootropic Agents/metabolism , Nootropic Agents/pharmacokinetics , Rats , Rats, Sprague-Dawley , Rats, Wistar , Receptors, Histamine H3/analysis , Sus scrofa
6.
Biochem Pharmacol ; 73(8): 1182-94, 2007 Apr 15.
Article in English | MEDLINE | ID: mdl-17276409

ABSTRACT

GSK207040 (5-[(3-cyclobutyl-2,3,4,5-tetrahydro-1H-3-benzazepin-7-yl)oxy]-N-methyl-2-pyrazinecarboxamide) and GSK334429 (1-(1-methylethyl)-4-({1-[6-(trifluoromethyl)-3-pyridinyl]-4-piperidinyl}carbonyl)hexahydro-1H-1,4-diazepine) are novel and selective non-imidazole histamine H(3) receptor antagonists from distinct chemical series with high affinity for human (pK(i)=9.67+/-0.06 and 9.49+/-0.09, respectively) and rat (pK(i)=9.08+/-0.16 and 9.12+/-0.14, respectively) H(3) receptors expressed in cerebral cortex. At the human recombinant H(3) receptor, GSK207040 and GSK334429 were potent functional antagonists (pA(2)=9.26+/-0.04 and 8.84+/-0.04, respectively versus H(3) agonist-induced changes in cAMP) and exhibited inverse agonist properties (pIC(50)=9.20+/-0.36 and 8.59+/-0.04 versus basal GTPgammaS binding). Following oral administration, GSK207040 and GSK334429 potently inhibited cortical ex vivo [(3)H]-R-alpha-methylhistamine binding (ED(50)=0.03 and 0.35 mg/kg, respectively). Functional antagonism of central H(3) receptors was demonstrated by blockade of R-alpha-methylhistamine-induced dipsogenia in rats (ID(50)=0.02 and 0.11 mg/kg p.o. for GSK207040 and GSK334429, respectively). In more pathophysiologically relevant pharmacodynamic models, GSK207040 (0.1, 0.3, 1 and 3mg/kg p.o.) and GSK334429 (0.3, 1 and 3mg/kg p.o.) significantly reversed amnesia induced by the cholinergic antagonist scopolamine in a passive avoidance paradigm. In addition, GSK207040 (0.1, 0.3 and 1mg/kg p.o.) and GSK334429 (3 and 10mg/kg p.o.) significantly reversed capsaicin-induced reductions in paw withdrawal threshold, suggesting for the first time that blockade of H(3) receptors may be able to reduce tactile allodynia. Novel H(3) receptor antagonists such as GSK207040 and GSK334429 may therefore have therapeutic potential not only in dementia but also in neuropathic pain.


Subject(s)
Azepines/therapeutic use , Benzazepines/therapeutic use , Capsaicin , Histamine Antagonists/therapeutic use , Memory Disorders/drug therapy , Neuralgia/drug therapy , Pyrazines/therapeutic use , Pyridines/therapeutic use , Receptors, Histamine H3/metabolism , Scopolamine , Analgesics/pharmacokinetics , Analgesics/pharmacology , Analgesics/therapeutic use , Animals , Avoidance Learning/drug effects , Azepines/administration & dosage , Azepines/pharmacokinetics , Benzazepines/pharmacokinetics , Benzazepines/pharmacology , Central Nervous System/drug effects , Drinking/drug effects , Histamine Agonists/pharmacokinetics , Histamine Agonists/pharmacology , Histamine Antagonists/pharmacokinetics , Histamine Antagonists/pharmacology , Humans , Male , Memory Disorders/chemically induced , Neuralgia/chemically induced , Pyrazines/pharmacokinetics , Pyrazines/pharmacology , Pyridines/administration & dosage , Pyridines/pharmacokinetics , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...