Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biodivers Data J ; 12: e117890, 2024.
Article in English | MEDLINE | ID: mdl-38371614

ABSTRACT

Background: In September 2012, a comprehensive survey of Pico Island was conducted along an elevational transect, starting at Manhenha (10 m a.s.l.) and culminating at the Pico Mountain caldera (2200 m a.s.l.). The primary objective was to systematically inventory the bryophytes inhabiting the best-preserved areas of native vegetation environments. Twelve sites were selected, each spaced at 200 m elevation intervals. Within each site, two 10 m x 10 m plots were established in close proximity (10-15 m apart). Within these plots, three 2 m x 2 m quadrats were randomly selected and sampled for bryophytes using microplots measuring 10 cm x 5 cm, which were then collected into paper bags. Six substrates were surveyed in each quadrat: rock, soil, humus, organic matter, tree bark and leaves/fronds. Three replicates were obtained from all substrates available and colonised by bryophytes, resulting in a maximum of 18 microplots per quadrat, 54 microplots per plot, 108 microplots per site, and a total of 1296 microplots across the 12 sites on Pico Island. New information: Two-thirds of the maximum expected number of microplots (n = 878; 67.75%) were successfully collected, yielding a total of 4896 specimens. The vast majority (n = 4869) were identified at the species/subspecies level. The study identified a total of 70 moss and 71 liverwort species or subspecies. Elevation levels between 600-1000 m a.s.l., particularly in the native forest plots, exhibited both a higher number of microplots and greater species richness. This research significantly enhanced our understanding of Azorean bryophyte diversity and distribution, contributing valuable insights at both local and regional scales. Notably, two new taxa for the Azores were documented during the MOVECLIM study, namely the pleurocarpous mosses Antitrichiacurtipendula and Isotheciuminterludens.

2.
Ecol Evol ; 5(23): 5443-55, 2015 12.
Article in English | MEDLINE | ID: mdl-27069596

ABSTRACT

A large amount of data for inconspicuous taxa is stored in natural history collections; however, this information is often neglected for biodiversity patterns studies. Here, we evaluate the performance of direct interpolation of museum collections data, equivalent to the traditional approach used in bryophyte conservation planning, and stacked species distribution models (S-SDMs) to produce reliable reconstructions of species richness patterns, given that differences between these methods have been insufficiently evaluated for inconspicuous taxa. Our objective was to contrast if species distribution models produce better inferences of diversity richness than simply selecting areas with the higher species numbers. As model species, we selected Iberian species of the genus Grimmia (Bryophyta), and we used four well-collected areas to compare and validate the following models: 1) four Maxent richness models, each generated without the data from one of the four areas, and a reference model created using all of the data and 2) four richness models obtained through direct spatial interpolation, each generated without the data from one area, and a reference model created with all of the data. The correlations between the partial and reference Maxent models were higher in all cases (0.45 to 0.99), whereas the correlations between the spatial interpolation models were negative and weak (-0.3 to -0.06). Our results demonstrate for the first time that S-SDMs offer a useful tool for identifying detailed richness patterns for inconspicuous taxa such as bryophytes and improving incomplete distributions by assessing the potential richness of under-surveyed areas, filling major gaps in the available data. In addition, the proposed strategy would enhance the value of the vast number of specimens housed in biological collections.

SELECTION OF CITATIONS
SEARCH DETAIL
...