Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Langmuir ; 38(23): 7357-7364, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35622465

ABSTRACT

The wetting behavior of fiber networks, which are central to many research and industrial applications, can be difficult to predict accurately owing to their complex, heterogeneous structure. The cylindrical pore model, widely used to interpret and predict the forced wetting of hydrophobic porous materials, often does not yield correct results when working with fibrous networks like paper substrates and non-woven fabrics. This is because these materials exhibit variation in pore size, fiber length, and fiber diameter, as well as a reentrant pore geometry. Quantitative prediction of the critical wetting resistance of hydrophobized papers to arbitrary entrant liquids requires a more sophisticated analytical approach that considers this unique fibrous structure and the effect of stochastic variations within the pore matrix. In this work, we directly measure the critical breakthrough pressure for different porous substrates across various wetting entrant liquids. To isolate the effects of the structure and stochastics on critical wetting behavior of fibrous networks, we analyze additional materials strategically chosen for their subsets of structural features. Ultimately, we formulate a method that demonstrates physical reasonableness, numerical accuracy, and the ability to elucidate the effects of pore size, pore size distribution, fiber diameter, fiber diameter distribution, surface wettability, and liquid surface tension on critical breakthrough pressure of liquids through hydrophobic fibrous networks.

3.
ACS Appl Mater Interfaces ; 10(17): 15258-15269, 2018 May 02.
Article in English | MEDLINE | ID: mdl-29630334

ABSTRACT

Roughness contrast patterns were generated on copper surfaces by a simple one-step site-selective oxidation process using a felt-tipped ink pen masking method. The patterned surface exhibited strong underwater oil wettability contrast which allows oil droplet confinement. Oil droplets placed on two patterned smooth dots (reservoirs) connected by a patterned smooth channel will spontaneously exchange liquid as a result of Laplace pressure differences until their shapes have reached equilibrium. In our experiments, residual solubility of the oil in water was overcome by using saturated oil-in-water solutions as the aqueous medium. In the saturated solution, the dependence of pattern geometry and oil viscosity on transported volume and the flow rate in the underwater oil transport process was investigated for dichloromethane and hexadecane. Experimental results were in good agreement with a simple model for Laplace pressure-driven flow. Depending on droplet curvatures, oil can be transported from large to small reservoirs or vice versa. The model predictions enable the design of reservoir and channel dimensions to control liquid transport in the water-solid surface-oil system. The patterning technique was extended to more complex patterns with multiple reservoirs for smart oil separation and mixing processes. The concepts demonstrated in this study can be employed to seed droplet arrays with specific initial drop volumes and achieve subsequent droplet mixing at controlled flow rates for potential lab-on-a-chip applications ranging from oil-droplet-based miniature reactors and sensors to high-throughput assays.

4.
J Colloid Interface Sci ; 516: 202-214, 2018 Apr 15.
Article in English | MEDLINE | ID: mdl-29408106

ABSTRACT

The economical use of water-repellent coatings on polymeric materials in commercial and industrial applications is limited by their mechanical wear robustness and long-term durability. In this study, we demonstrate that polyethylene terephthalate (PET) fabric modified with inorganic, methyltrimethoxysilane (MTMS)-based coatings shows excellent resistance against various types of wear damage, thereby mimicking superhydrophobic biological materials. These features were facilitated by the rational design of coating processing that also enabled tunable hierarchical surface structure. A series of custom and standard testing protocols revealed that coating-to-substrate adhesion was remarkably high, as was the resistance to various mechanical abradents. The most intriguing characteristic observed during aging and abrasion cycles was the enhancement in non-wettability or 'rejuvenation' reflected by water droplet roll-off behavior, a characteristic of self-cleaning materials. Water-repellent properties of coated polyester were also enhanced by prolonged thermal annealing and were maintained after custom laundry. The developed technology offers opportunities to design low cost, durable and functional textiles for both indoor and outdoor applications.

5.
ACS Biomater Sci Eng ; 4(1): 90-97, 2018 Jan 08.
Article in English | MEDLINE | ID: mdl-29333490

ABSTRACT

Bacterial adhesion to stainless steel 316L (SS316L), which is an alloy typically used in many medical devices and food processing equipment, can cause serious infections along with substantial healthcare costs. This work demonstrates that nanotextured SS316L surfaces produced by electrochemical etching effectively inhibit bacterial adhesion of both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus, but exhibit cytocompatibility and no toxicity toward mammalian cells in vitro. Additionally, the electrochemical surface modification on SS316L results in formation of superior passive layer at the surface, improving corrosion resistance. The nanotextured SS316L offers significant potential for medical applications based on the surface structure-induced reduction of bacterial adhesion without use of antibiotic or chemical modifications while providing cytocompatibility and corrosion resistance in physiological conditions.

6.
Langmuir ; 33(47): 13522-13529, 2017 11 28.
Article in English | MEDLINE | ID: mdl-29120647

ABSTRACT

Underwater oil droplets stretched and pinned by dual-dot oleophilic patterns on a superoleophobic substrate have been split into two nearly equal-volume daughter droplets using an underwater superoleophobic blade at substantially lower cutting speeds than reported in previous studies. A "liquid exchange model" based on Laplace pressure-driven liquid transport has been proposed to explain the mechanism of the underwater droplet split process. The dependence of droplet geometrical shape (curvature) and liquid properties (surface tension, viscosity) on the critical cutting speed that allows equal-volume split was investigated. Results demonstrate that critical cutting speed increases with increased curvature and surface tension of the split droplet, and decreases with increased droplet viscosity, which agrees with the proposed model. The ability to reproducibly split a single bulk oil droplet into daughter droplets with nearly equal volume facilitates the development of new functions for underwater microreactors.

7.
ACS Appl Mater Interfaces ; 9(10): 9195-9203, 2017 Mar 15.
Article in English | MEDLINE | ID: mdl-28225585

ABSTRACT

Surface modification of cellulose-based paper, which displays roll-off properties for water and oils (surface tension ≥23.8 mN·m-1) and good repellency toward n-heptane (20.1 mN·m-1), is reported. Droplets of water, diiodomethane, motor oil, hexadecane, and decane all "bead up", i.e., exhibit high contact angles, and roll off the treated surface under the influence of gravity. Unlike widely used approaches that rely on the deposition of nanoparticles or electrospun nanofibers to create superamphiphobic surfaces, our method generates a hierarchical structure as an inherent property of the substrate and displays good adhesion between the film and substrate. The two-step combination of plasma etching and vapor deposition used in this study enables fine-tuning of the nanoscale roughness and thereby facilitates enhanced fundamental understanding of the effect of micro- and nanoscale roughness on the paper wetting properties. The surfaces maintain their "roll-off" properties after dynamic impact tests, demonstrating their mechanical robustness. Furthermore, the superamphiphobic paper has high gas permeability due to pore-volume enhancement by plasma etching but maintains the mechanical flexibility and strength of untreated paper, despite the presence of nanostructures. The unique combination of the chemical and physical properties of the resulting superamphiphobic paper is of practical interest for a range of applications such as breathable and disposable medical apparel, antifouling biomedical devices, antifingerprint paper, liquid packaging, microfluidic devices, and medical testing strips through a simple surface etching plus coating process.

8.
ACS Appl Mater Interfaces ; 5(11): 5381-6, 2013 Jun 12.
Article in English | MEDLINE | ID: mdl-23647359

ABSTRACT

Cellulose-based paper remains a vital component of modern day society; however, its use is severely limited in certain applications because of hydrophilic and oleophilic properties. In this manuscript we present a novel method to create superamphiphobic paper by combining the control of fiber size and structure with plasma etching and fluoropolymer deposition. The heterogeneous nature of the paper structure is drastically different from that of artificially created superamphiphobic surfaces. By refining the wood fibers, smaller diameter fibers (fibrils) are created to support fluid droplets. After oxygen plasma etching and deposition of a fluoropolymer film, paper samples are able to support motor oil contact angles of 149 ± 3°, although these structures readily absorb n-hexadecane. Exchange of water in the pulp solution with sec-butanol provides additional control over fiber spacing to create superamphiphobic substrates with contact angles >150° for water, ethylene glycol, motor oil, and n-hexadecane.

9.
ACS Appl Mater Interfaces ; 4(9): 4549-56, 2012 Sep 26.
Article in English | MEDLINE | ID: mdl-22913317

ABSTRACT

In this work, we present a method to render stainless steel surfaces superhydrophobic while maintaining their corrosion resistance. Creation of surface roughness on 304 and 316 grade stainless steels was performed using a hydrofluoric acid bath. New insight into the etch process is developed through a detailed analysis of the chemical and physical changes that occur on the stainless steel surfaces. As a result of intergranular corrosion, along with metallic oxide and fluoride redeposition, surface roughness was generated on the nano- and microscales. Differences in alloy composition between 304 and 316 grades of stainless steel led to variations in etch rate and different levels of surface roughness for similar etch times. After fluorocarbon film deposition to lower the surface energy, etched samples of 304 and 316 stainless steel displayed maximum static water contact angles of 159.9 and 146.6°, respectively. However, etching in HF also caused both grades of stainless steel to be susceptible to corrosion. By passivating the HF-etched samples in a nitric acid bath, the corrosion resistant properties of stainless steels were recovered. When a three step process was used, consisting of etching, passivation and fluorocarbon deposition, 304 and 316 stainless steel samples exhibited maximum contact angles of 157.3 and 134.9°, respectively, while maintaining corrosion resistance.

10.
ChemSusChem ; 5(7): 1186-9, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22707477

ABSTRACT

CZTS: Atlanta. A supercritical CO(2) continuous-flow reactor is employed to deposit micro- and nanoparticles of copper zinc tin sulfide (CZTS), a promising material for thin-film solar cells, onto a silicon wafer. The image shows a chemical map of deposited CZTS particles (scale bar: 15 µm), and a Raman spectrum with a peak characteristic of CZTS.


Subject(s)
Carbon Dioxide/chemistry , Copper/chemistry , Microtechnology/methods , Nanoparticles/chemistry , Nanotechnology/methods , Sulfides/chemistry , Sulfides/chemical synthesis , Tin Compounds/chemistry , Tin Compounds/chemical synthesis , Zinc Compounds/chemistry , Zinc Compounds/chemical synthesis
11.
Nanoscale ; 4(9): 2962-7, 2012 Apr 28.
Article in English | MEDLINE | ID: mdl-22454042

ABSTRACT

We have studied the electronic characteristics of multilayer epitaxial graphene under a perpendicularly applied electric bias. Ultraviolet photoemission spectroscopy measurements reveal that there is notable variation of the electronic density-of-states in valence bands near the Fermi level. Evolution of the electronic structure of graphite and rotational-stacked multilayer epitaxial graphene as a function of the applied electric bias is investigated using first-principles density-functional theory including interlayer van der Waals interactions. The experimental and theoretical results demonstrate that the tailoring of electronic band structure correlates with the interlayer coupling tuned by the applied bias. The implications of controllable electronic structure of rotationally fault-stacked epitaxial graphene grown on the C-face of SiC for future device applications are discussed.

12.
Analyst ; 136(23): 4906-11, 2011 Dec 07.
Article in English | MEDLINE | ID: mdl-21994915

ABSTRACT

This communication presents a novel label-free biosensing method to monitor DNA hybridization via infrared attenuated total reflection (IR-ATR) spectroscopy using surface-modified ZnSe waveguides. Well-defined carboxyl-terminated monolayers were formed at H-terminated ZnSe by direct photochemical activation. Chemical activation of the acidic function was obtained by using succinimide/carbodiimide linkers. The sequential surface modification reactions were characterized by XPS and IR-ATR spectroscopy. Finally, a single stranded DNA probe with a C6-NH(2) 5' modifier was coupled to the ester-terminated surface via peptide bonding, and the hybridization of the immobilized DNA sequence with its complementary strand was directly evaluated by IR-ATR spectroscopy in the mid-infrared (MIR) spectral regime (3-20 µm) without requiring an additional label. A shift of the vibrational modes corresponding to the phosphodiester and deoxyribose structures of the DNA backbone was observed. Hence, this approach substantiates a novel strategy for label-free DNA detection utilizing mid-infrared spectroscopy as the optical sensing platform.


Subject(s)
Biosensing Techniques/methods , DNA/chemistry , Nucleic Acid Hybridization , Selenium Compounds/chemistry , Zinc Compounds/chemistry , Carbodiimides/chemistry , DNA/analysis , Spectrophotometry, Infrared/methods , Succinimides/chemistry
13.
Annu Rev Chem Biomol Eng ; 2: 299-324, 2011.
Article in English | MEDLINE | ID: mdl-22432621

ABSTRACT

Current integrated circuit (IC) manufacturing consists of more than 800 process steps, nearly all of which involve reactions at surfaces that significantly impact device yield and performance. From initial surface preparation through film deposition, patterning, etching, residue removal, and metallization, an understanding of surface reactions and interactions is critical to the successful continuous scaling, yield, and reliability of electronic devices. In this review, some of the most important surface reactions that drive the development of microelectronic device fabrication are described. The reactions discussed do not constitute comprehensive coverage of this topic in IC manufacture but have been selected to demonstrate the importance of surface/interface reactions and interactions in the development of new materials, processing sequences, and process integration challenges. Specifically, the review focuses on surface reactions related to surface cleaning/preparation, semiconductor film growth, dielectric film growth, metallization, and etching (dry and wet).


Subject(s)
Electronics/instrumentation , Electronics/methods , Microtechnology/instrumentation , Microtechnology/methods , Humans , Industry/methods , Metals/chemistry , Molecular Structure , Semiconductors , Silicon Dioxide/chemistry , Surface Properties
14.
Langmuir ; 26(11): 8908-13, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20205405

ABSTRACT

Superoleophobic surfaces display contact angles >150 degrees with liquids that have lower surface energies than does water. The design of superoleophobic surfaces requires an understanding of the effect of the geometrical shape of etched silicon surfaces on the contact angle and hysteresis observed when different liquids are brought into contact with these surfaces. This study used liquid-based metal-assisted etching and various silane treatments to create superoleophobic surfaces on a Si(111) surface. Etch conditions such as the etch time and etch solution concentration played critical roles in establishing the oleophobicity of Si(111). When compared to Young's contact angle, the apparent contact angle showed a transition from a Cassie to a Wenzel state for low-surface-energy liquids as different silane treatments were applied to the silicon surface. These results demonstrated the relationship between the re-entrant angle of etched surface structures and the contact angle transition between Cassie and Wenzel behavior on etched Si(111) surfaces.

15.
Nanotechnology ; 21(15): 155705, 2010 Apr 16.
Article in English | MEDLINE | ID: mdl-20332558

ABSTRACT

Improvement of the robustness of superhydrophobic surfaces is critical in order to achieve commercial applications of these surfaces in such diverse areas as self-cleaning, water repellency and corrosion resistance. In this study, the mechanical robustness of superhydrophobic surfaces was evaluated on hierarchically structured silicon surfaces. The effect of two-scale hierarchical structures on robustness was investigated using an abrasion test and the results compared to those of superhydrophobic surfaces fabricated from polymeric materials and from silicon that contains only nanostructures. Unlike the polymeric and nanostructure-only surfaces, the hierarchical structures retained superhydrophobic behavior after mechanical abrasion.


Subject(s)
Nanostructures/chemistry , Silicon/chemistry , Nanostructures/ultrastructure , Polyurethanes/chemistry , Surface Properties , Water/chemistry
16.
Lab Chip ; 9(21): 3066-75, 2009 Nov 07.
Article in English | MEDLINE | ID: mdl-19823721

ABSTRACT

Superhydrophobic paper substrates were patterned with high surface energy black ink using commercially available desktop printing technology. The shape and size of the ink islands were designed to control the adhesion forces on water drops in two directions, parallel ('drag-adhesion') and perpendicular ('extensional-adhesion') to the substrate. Experimental data on the adhesion forces shows good agreement with classical models for 'drag' (Furmidge equation) and 'extensional' adhesion (modified Dupré equation). The tunability of the two adhesion forces was used to implement four basic unit operations for the manipulation of liquid drops on the paper substrates: storage, transfer, mixing and sampling. By combining these basic functionalities it is possible to design simple two-dimensional lab-on-paper (LOP) devices. In our 2D LOP prototype, liquid droplets adhere to the porous substrate, rather than absorbing into the paper; as a result, liquid droplets remain accessible for further quantitative testing and analysis, after performing simple qualitative on-chip testing. In addition, the use of commercially available desktop printers and word processing software to generate ink patterns enable end users to design LOP devices for specific applications.


Subject(s)
Lab-On-A-Chip Devices , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Paper , Equipment Design , Hydrophobic and Hydrophilic Interactions , Ink , Models, Chemical , Software , Water/chemistry
17.
Langmuir ; 24(18): 10421-6, 2008 Sep 16.
Article in English | MEDLINE | ID: mdl-18710271

ABSTRACT

Silicon is employed in a variety of electronic and optical devices such as integrated circuits, photovoltaics, sensors, and detectors. In this paper, Au-assisted etching of silicon has been used to prepare superhydrophobic surfaces that may add unique properties to such devices. Surfaces were characterized by contact angle and contact angle hysteresis. Superhydrophobic surfaces with reduced hysteresis were prepared by Au-assisted etching of pyramid-structured silicon surfaces to generate hierarchical surfaces. Consideration of the Laplace pressure on hydrophobized hierarchical surfaces gives insight into the manner by which contact is established at the liquid/composite surface interface. Light reflectivity from the etched surfaces was also investigated to assess application of these structures to photovoltaic devices.

18.
J Colloid Interface Sci ; 326(2): 465-70, 2008 Oct 15.
Article in English | MEDLINE | ID: mdl-18656893

ABSTRACT

A method for the preparation of inorganic superhydrophobic silica coatings using sol-gel processing with tetramethoxysilane and isobutyltrimethoxysilane as precursors is described. Incorporation of isobutyltrimethoxysilane into silica layers resulted in the existence of hydrophobic isobutyl surface groups, thereby generating surface hydrophobicity. When combined with the surface roughness that resulted from sol-gel processing, a superhydrophobic surface was achieved. This surface showed improved UV and thermal stability compared to superhydrophobic surfaces generated from polybutadiene by plasma etching. Under prolonged UV tests (ASTM D 4329), these surfaces gradually lost superhydrophobic character. However, when the as-prepared superhydrophobic surface was treated at 500 degrees C to remove the organic moieties and covered with a fluoroalkyl layer by a perfluorooctylsilane treatment, the surface regained superhydrophobicity. The UV and thermal stability of these surfaces was maintained upon exposure to temperatures up to 400 degrees C and UV testing times of 5500 h. Contact angles remained >160 degrees with contact angle hysteresis approximately 2 degrees.


Subject(s)
Gels/chemistry , Nanoparticles/chemistry , Organosilicon Compounds/chemistry , Silicon Dioxide/chemistry , Ultraviolet Rays , Hydrocarbons, Fluorinated/chemistry , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Silanes/chemistry , Surface Properties , Temperature , Time Factors , Trimethylsilyl Compounds/chemistry , Wettability
19.
Anal Chem ; 80(13): 5260-5, 2008 Jul 01.
Article in English | MEDLINE | ID: mdl-18510344

ABSTRACT

Pinhole-free insulation of micro- and nanoelectrodes is the key to successful microelectrochemical experiments performed in vivo or in combination with scanning probe experiments. A novel insulation technique based on fluorocarbon insulation layers deposited from pentafluoroethane (PFE, CF3CHF2) plasmas is presented as a promising electrical insulation approach for microelectrodes and combined atomic force microscopy-scanning electrochemical microscopy (AFM-SECM) probes. The deposition allows reproducible and uniform coating, which is essential for many analytical applications of micro- and nanoelectrodes such as, e.g., in vivo experiments and SECM experiments. Disk-shaped microelectrodes and frame-shaped AFM tip-integrated electrodes have been fabricated by postinsulation focused ion beam (FIB) milling. The thin insulation layer for combined AFM-SECM probes renders this fabrication technique particularly useful for submicro insulation providing radius ratios of the outer insulation versus the disk electrode (RG values) suitable for SECM experiments. Characterization of PFE-insulated AFM-SECM probes will be presented along with combined AFM-SECM approach curves and imaging.


Subject(s)
Electrochemistry/methods , Fluorocarbons/chemistry , Microscopy, Atomic Force/methods , Microscopy, Electron, Scanning/methods , Electrochemistry/instrumentation , Gold/chemistry , Microelectrodes , Microscopy, Atomic Force/instrumentation , Microscopy, Electron, Scanning/instrumentation
20.
Langmuir ; 24(9): 4785-90, 2008 May 06.
Article in English | MEDLINE | ID: mdl-18315020

ABSTRACT

Most of the artificial superhydrophobic surfaces that have been fabricated to date are not biodegradable, renewable, or mechanically flexible and are often expensive, which limits their potential applications. In contrast, cellulose, a biodegradable, renewable, flexible, inexpensive, biopolymer which is abundantly present in nature, satisfies all the above requirements, but it is not superhydrophobic. Superhydrophobicity on cellulose paper was obtained by domain-selective etching of amorphous portions of the cellulose in an oxygen plasma and subsequently coating the etched surface with a thin fluorocarbon film deposited via plasma-enhanced chemical vapor deposition using pentafluoroethane as a precursor. Variation of plasma treatment yielded two types of superhydrophobicity : "roll-off" (contact angle (CA), 166.7 degrees +/- 0.9 degrees ; CA hysteresis, 3.4 degrees +/- 0.1 degrees ) and "sticky" (CA, 144.8 degrees +/- 5.7 degrees ; CA hysteresis, 79.1 degrees +/- 15.8 degrees ) near superhydrophobicity. The nanometer scale roughness obtained by delineating the internal roughness of each fiber and the micrometer scale roughness which is inherent to a cellulose paper surface are robust when compared to roughened structures created by traditional polymer grafting, nanoparticle deposition, or other artificial means.

SELECTION OF CITATIONS
SEARCH DETAIL
...