Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 59(10): 4778-89, 2016 05 26.
Article in English | MEDLINE | ID: mdl-27088900

ABSTRACT

Neurofibrillary tangles (NFTs) made up of aggregated tau protein have been identified as the pathologic hallmark of several neurodegenerative diseases including Alzheimer's disease. In vivo detection of NFTs using PET imaging represents a unique opportunity to develop a pharmacodynamic tool to accelerate the discovery of new disease modifying therapeutics targeting tau pathology. Herein, we present the discovery of 6-(fluoro-(18)F)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine, 6 ([(18)F]-MK-6240), as a novel PET tracer for detecting NFTs. 6 exhibits high specificity and selectivity for binding to NFTs, with suitable physicochemical properties and in vivo pharmacokinetics.


Subject(s)
Drug Discovery , Isoquinolines/chemistry , Molecular Imaging , Neurofibrillary Tangles/pathology , Positron-Emission Tomography , Fluorine Radioisotopes/chemistry , Humans , Isoquinolines/chemical synthesis , Isoquinolines/pharmacokinetics , Molecular Structure , Neurofibrillary Tangles/metabolism
2.
J Pharmacol Toxicol Methods ; 61(3): 319-28, 2010.
Article in English | MEDLINE | ID: mdl-20132901

ABSTRACT

INTRODUCTION: Poly ADP-ribose polymerase (PARP) maintains genomic integrity by repairing DNA strand breaks, however over-activation of PARP following neural tissue injury is hypothesized to cause neuronal death. Therefore, PARP inhibitors have potential for limiting neural injury under certain conditions. A reliable method for assessing PARP activity in brain is critical for development of novel inhibitors with CNS activity. We developed the PARP In Situ Activity (PISA) assay to provide a direct, quantitative assessment of CNS PARP activity in vitro or in vivo. METHODS: The assay utilized brain sections from rats with striatal kainic acid (KA) lesions and 3H- or biotinylated NAD+ as the substrate to assess PARP activity. Following optimization of the assay, it was used to assess in vitro and in vivo efficacy of known and novel PARP inhibitors. The assay also was used to assess PARP activity in male and female gonad-intact and ovariectomized rats. RESULTS: Using 3H-NAD+ as the substrate, PARP activity was greater (p<0.01) in tissue from KA-lesioned vs. non-lesioned rats. Using biotinylated NAD+ it was revealed that PARP activity was present ipsilateral to the KA injection site, and labeling was blocked by incubation with excess unlabeled NAD+ or PARP inhibitors. The PARP inhibitor, 3-aminobenzamide and several novel inhibitors reduced (p<0.01) polymerase activity in vitro. Furthermore, the inhibitor MRLSD303 reduced (p<0.001) PARP activity in vivo in both male and female rats. Finally, administration of the novel PARP inhibitor MRLIT115 dose-dependently reduced (p<0.001) polymerase activity in vivo. DISCUSSION: The PISA assay provides a direct, quantitative method for assessing PARP activity in vitro and provides critical information on factors underlying in vivo efficacy of chemical inhibitors including brain penetration and target engagement. These findings support use of the PISA assay as a screening tool for testing efficacy of PARP inhibitors in brain.


Subject(s)
Enzyme Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors , Poly(ADP-ribose) Polymerases/metabolism , Animals , Benzamides/pharmacology , Brain/drug effects , Brain/enzymology , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Enzyme Activation/physiology , Female , Male , Models, Animal , Rats , Rats, Sprague-Dawley
3.
Biochem Biophys Res Commun ; 331(1): 159-66, 2005 May 27.
Article in English | MEDLINE | ID: mdl-15845373

ABSTRACT

We report the first homology model of human bradykinin receptor B1 generated from the crystal structure of bovine rhodopsin as a template. Using an automated docking procedure, two B1 receptor antagonists of the dihydroquinoxalinone structural class were docked into the receptor model. Site-directed mutagenesis data of the amino acid residues in TM1, TM3, TM6, and TM7 were incorporated to place the compounds in the binding site of the homology model of the human B1 bradykinin receptor. The best pose in agreement with the mutation data was selected for detailed study of the receptor-antagonist interaction. To test the model, the calculated antagonist-receptor binding energy was correlated with the experimentally measured binding affinity (K(i)) for nine dihydroquinoxalinone analogs. The model was used to gain insight into the molecular mechanism for receptor function and to optimize the dihydroquinoxalinone analogs.


Subject(s)
Models, Molecular , Quinoxalines/chemistry , Receptor, Bradykinin B1/chemistry , Amino Acid Sequence , Binding Sites , Humans , Molecular Sequence Data , Mutagenesis, Site-Directed , Protein Binding , Protein Structure, Secondary , Receptor, Bradykinin B1/genetics , Receptor, Bradykinin B1/metabolism , Rhodopsin/chemistry , Sequence Alignment , Structural Homology, Protein
4.
J Am Chem Soc ; 125(25): 7516-7, 2003 Jun 25.
Article in English | MEDLINE | ID: mdl-12812482

ABSTRACT

Bradykinin (BK) plays an important role in the pathophysiological processes accompanying pain and inflammation. Selective bradykinin B1 receptor antagonists have been shown to be anti-nociceptive in animal models and could be novel therapeutic agents for the treatment of pain and inflammation. We have explored chemical modifications in a series of dihydroquinoxalinone sulfonamides to evaluate the effects of various structural changes on biological activity. The optimization of a screening lead compound, facilitated by a homology model of the BK B1 receptor, culminated in the discovery of a potent human BK B1 receptor antagonist. Results from site-directed mutagenesis studies and experiments in an animal pain model are presented.


Subject(s)
Bradykinin Receptor Antagonists , Quinoxalines/chemistry , Quinoxalines/pharmacology , Analgesics/chemistry , Analgesics/pharmacology , Animals , Binding Sites , Dogs , Humans , Kinetics , Models, Molecular , Mutagenesis, Site-Directed , Pain Measurement/drug effects , Rabbits , Rats , Receptor, Bradykinin B1 , Receptors, Bradykinin/chemistry , Receptors, Bradykinin/genetics , Receptors, Bradykinin/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...