Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
JOR Spine ; 7(1): e1301, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38222819

ABSTRACT

Background: Paraspinal muscle fat infiltration is associated with spinal degeneration and low back pain, however, quantifying muscle fat using clinical magnetic resonance imaging (MRI) techniques continues to be a challenge. Advanced MRI techniques, including chemical-shift encoding (CSE) based water-fat MRI, enable accurate measurement of muscle fat, but such techniques are not widely available in routine clinical practice. Methods: To facilitate assessment of paraspinal muscle fat using clinical imaging, we compared four thresholding approaches for estimating muscle fat fraction (FF) using T1- and T2-weighted images, with measurements from water-fat MRI as the ground truth: Gaussian thresholding, Otsu's method, K-mean clustering, and quadratic discriminant analysis. Pearson's correlation coefficients (r), mean absolute errors, and mean bias errors were calculated for FF estimates from T1- and T2-weighted MRI with water-fat MRI for the lumbar multifidus (MF), erector spinae (ES), quadratus lumborum (QL), and psoas (PS), and for all muscles combined. Results: We found that for all muscles combined, FF measurements from T1- and T2-weighted images were strongly positively correlated with measurements from the water-fat images for all thresholding techniques (r = 0.70-0.86, p < 0.0001) and that variations in inter-muscle correlation strength were much greater than variations in inter-method correlation strength. Conclusion: We conclude that muscle FF can be quantified using thresholded T1- and T2-weighted MRI images with relatively low bias and absolute error in relation to water-fat MRI, particularly in the MF and ES, and the choice of thresholding technique should depend on the muscle and clinical MRI sequence of interest.

2.
Pain Med ; 24(Suppl 1): S149-S159, 2023 08 04.
Article in English | MEDLINE | ID: mdl-36943371

ABSTRACT

OBJECTIVES: To evaluate whether combining fast acquisitions with deep-learning reconstruction can provide diagnostically useful images and quantitative assessment comparable to standard-of-care acquisitions for lumbar spine magnetic resonance imaging (MRI). METHODS: Eighteen patients were imaged with both standard protocol and fast protocol using reduced signal averages, each protocol including sagittal fat-suppressed T2-weighted, sagittal T1-weighted, and axial T2-weighted 2D fast spin-echo sequences. Fast-acquisition data was additionally reconstructed using vendor-supplied deep-learning reconstruction with three different noise reduction factors. For qualitative analysis, standard images as well as fast images with and without deep-learning reconstruction were graded by three radiologists on five different categories. For quantitative analysis, convolutional neural networks were applied to sagittal T1-weighted images to segment intervertebral discs and vertebral bodies, and disc heights and vertebral body volumes were derived. RESULTS: Based on noninferiority testing on qualitative scores, fast images without deep-learning reconstruction were inferior to standard images for most categories. However, deep-learning reconstruction improved the average scores, and noninferiority was observed over 24 out of 45 comparisons (all with sagittal T2-weighted images while 4/5 comparisons with sagittal T1-weighted and axial T2-weighted images). Interobserver variability increased with 50 and 75% noise reduction factors. Deep-learning reconstructed fast images with 50% and 75% noise reduction factors had comparable disc heights and vertebral body volumes to standard images (r2≥ 0.86 for disc heights and r2≥ 0.98 for vertebral body volumes). CONCLUSIONS: This study demonstrated that deep-learning-reconstructed fast-acquisition images have the potential to provide noninferior image quality and comparable quantitative assessment to standard clinical images.


Subject(s)
Deep Learning , Humans , Lumbar Vertebrae/diagnostic imaging , Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted/methods , Technology
3.
Pain Med ; 24(Suppl 1): S139-S148, 2023 08 04.
Article in English | MEDLINE | ID: mdl-36315069

ABSTRACT

STUDY DESIGN: In vivo retrospective study of fully automatic quantitative imaging feature extraction from clinically acquired lumbar spine magnetic resonance imaging (MRI). OBJECTIVE: To demonstrate the feasibility of substituting automatic for human-demarcated segmentation of major anatomic structures in clinical lumbar spine MRI to generate quantitative image-based features and biomechanical models. SETTING: Previous studies have demonstrated the viability of automatic segmentation applied to medical images; however, the feasibility of these networks to segment clinically acquired images has not yet been demonstrated, as they largely rely on specialized sequences or strict quality of imaging data to achieve good performance. METHODS: Convolutional neural networks were trained to demarcate vertebral bodies, intervertebral disc, and paraspinous muscles from sagittal and axial T1-weighted MRIs. Intervertebral disc height, muscle cross-sectional area, and subject-specific musculoskeletal models of tissue loading in the lumbar spine were then computed from these segmentations and compared against those computed from human-demarcated masks. RESULTS: Segmentation masks, as well as the morphological metrics and biomechanical models computed from those masks, were highly similar between human- and computer-generated methods. Segmentations were similar, with Dice similarity coefficients of 0.77 or greater across networks, and morphological metrics and biomechanical models were similar, with Pearson R correlation coefficients of 0.69 or greater when significant. CONCLUSIONS: This study demonstrates the feasibility of substituting computer-generated for human-generated segmentations of major anatomic structures in lumbar spine MRI to compute quantitative image-based morphological metrics and subject-specific musculoskeletal models of tissue loading quickly, efficiently, and at scale without interrupting routine clinical care.


Subject(s)
Deep Learning , Humans , Retrospective Studies , Lumbar Vertebrae/diagnostic imaging , Neural Networks, Computer , Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted/methods
4.
JOR Spine ; 5(2): e1204, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35783915

ABSTRACT

Background: Modic changes (MCs) are the most prevalent classification system for describing magnetic resonance imaging (MRI) signal intensity changes in the vertebrae. However, there is a growing need for novel quantitative and standardized methods of characterizing these anomalies, particularly for lesions of transitional or mixed nature, due to the lack of conclusive evidence of their associations with low back pain. This retrospective imaging study aims to develop an interpretable deep learning-based detection tool for voxel-wise mapping of MCs. Methods: Seventy-five lumbar spine MRI exams that presented with acute-to-chronic low back pain, radiculopathy, and other symptoms of the lumbar spine were enrolled. The pipeline consists of two deep convolutional neural networks to generate an interpretable voxel-wise Modic map. First, an autoencoder was trained to segment vertebral bodies from T1-weighted sagittal lumbar spine images. Next, two radiologists segmented and labeled MCs from a combined T1- and T2-weighted assessment to serve as ground truth for training a second autoencoder that performs segmentation of MCs. The voxels in the detected regions were then categorized to the appropriate Modic type using a rule-based signal intensity algorithm. Post hoc, three radiologists independently graded a second dataset with the aid of the model predictions in an artificial (AI)-assisted experiment. Results: The model successfully identified the presence of changes in 85.7% of samples in the unseen test set with a sensitivity of 0.71 (±0.072), specificity of 0.95 (±0.022), and Cohen's kappa score of 0.63. In the AI-assisted experiment, the agreement between the junior radiologist and the senior neuroradiologist significantly improved from Cohen's kappa score of 0.52 to 0.58 (p < 0.05). Conclusions: This deep learning-based approach demonstrates substantial agreement with radiologists and may serve as a tool to improve inter-rater reliability in the assessment of MCs.

SELECTION OF CITATIONS
SEARCH DETAIL
...