Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters










Publication year range
1.
PLoS Biol ; 22(4): e3002575, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38683844

ABSTRACT

Muscles undergo developmental transitions in gene expression and alternative splicing that are necessary to refine sarcomere structure and contractility. CUG-BP and ETR-3-like (CELF) family RNA-binding proteins are important regulators of RNA processing during myogenesis that are misregulated in diseases such as Myotonic Dystrophy Type I (DM1). Here, we report a conserved function for Bruno 1 (Bru1, Arrest), a CELF1/2 family homolog in Drosophila, during early muscle myogenesis. Loss of Bru1 in flight muscles results in disorganization of the actin cytoskeleton leading to aberrant myofiber compaction and defects in pre-myofibril formation. Temporally restricted rescue and RNAi knockdown demonstrate that early cytoskeletal defects interfere with subsequent steps in sarcomere growth and maturation. Early defects are distinct from a later requirement for bru1 to regulate sarcomere assembly dynamics during myofiber maturation. We identify an imbalance in growth in sarcomere length and width during later stages of development as the mechanism driving abnormal radial growth, myofibril fusion, and the formation of hollow myofibrils in bru1 mutant muscle. Molecularly, we characterize a genome-wide transition from immature to mature sarcomere gene isoform expression in flight muscle development that is blocked in bru1 mutants. We further demonstrate that temporally restricted Bru1 rescue can partially alleviate hypercontraction in late pupal and adult stages, but it cannot restore myofiber function or correct structural deficits. Our results reveal the conserved nature of CELF function in regulating cytoskeletal dynamics in muscle development and demonstrate that defective RNA processing due to misexpression of CELF proteins causes wide-reaching structural defects and progressive malfunction of affected muscles that cannot be rescued by late-stage gene replacement.


Subject(s)
Cytoskeleton , Flight, Animal , Muscle Development , RNA-Binding Proteins , Sarcomeres , Animals , Alternative Splicing/genetics , Cytoskeleton/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Flight, Animal/physiology , Gene Expression Regulation, Developmental , Muscle Development/genetics , Muscles/metabolism , Myofibrils/metabolism , RNA Splicing/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Sarcomeres/metabolism
2.
Proc Natl Acad Sci U S A ; 121(11): e2316439121, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38442165

ABSTRACT

Adaptive myelination is the emerging concept of tuning axonal conduction velocity to the activity within specific neural circuits over time. Sound processing circuits exhibit structural and functional specifications to process signals with microsecond precision: a time scale that is amenable to adjustment in length and thickness of myelin. Increasing activity of auditory axons by introducing sound-evoked responses during postnatal development enhances myelin thickness, while sensory deprivation prevents such radial growth during development. When deprivation occurs during adulthood, myelin thickness was reduced. However, it is unclear whether sensory stimulation adjusts myelination in a global fashion (whole fiber bundles) or whether such adaptation occurs at the level of individual fibers. Using temporary monaural deprivation in mice provided an internal control for a) differentially tracing structural changes in active and deprived fibers and b) for monitoring neural activity in response to acoustic stimulation of the control and the deprived ear within the same animal. The data show that sound-evoked activity increased the number of myelin layers around individual active axons, even when located in mixed bundles of active and deprived fibers. Thicker myelination correlated with faster axonal conduction velocity and caused shorter auditory brainstem response wave VI-I delays, providing a physiologically relevant readout. The lack of global compensation emphasizes the importance of balanced sensory experience in both ears throughout the lifespan of an individual.


Subject(s)
Axons , Myelin Sheath , Animals , Mice , Sensory Deprivation , Acoustic Stimulation , Longevity
3.
Elife ; 122024 Feb 26.
Article in English | MEDLINE | ID: mdl-38407174

ABSTRACT

The Hydra nervous system is the paradigm of a 'simple nerve net'. Nerve cells in Hydra, as in many cnidarian polyps, are organized in a nerve net extending throughout the body column. This nerve net is required for control of spontaneous behavior: elimination of nerve cells leads to polyps that do not move and are incapable of capturing and ingesting prey (Campbell, 1976). We have re-examined the structure of the Hydra nerve net by immunostaining fixed polyps with a novel antibody that stains all nerve cells in Hydra. Confocal imaging shows that there are two distinct nerve nets, one in the ectoderm and one in the endoderm, with the unexpected absence of nerve cells in the endoderm of the tentacles. The nerve nets in the ectoderm and endoderm do not contact each other. High-resolution TEM (transmission electron microscopy) and serial block face SEM (scanning electron microscopy) show that the nerve nets consist of bundles of parallel overlapping neurites. Results from transgenic lines show that neurite bundles include different neural circuits and hence that neurites in bundles require circuit-specific recognition. Nerve cell-specific innexins indicate that gap junctions can provide this specificity. The occurrence of bundles of neurites supports a model for continuous growth and differentiation of the nerve net by lateral addition of new nerve cells to the existing net. This model was confirmed by tracking newly differentiated nerve cells.


Subject(s)
Cnidaria , Hydra , Animals , Nerve Net , Neurons , Neurites
4.
Glia ; 72(4): 794-808, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38174817

ABSTRACT

Axons of globular bushy cells in the cochlear nucleus convey hyper-accurate signals to the superior olivary complex, the initial site of binaural processing via comparably thick axons and the calyx of the Held synapse. Bushy cell fibers involved in hyper-accurate binaural processing of low-frequency sounds are known to have an unusual internode length-to-axon caliber ratio (L/d) correlating with higher conduction velocity and superior temporal precision of action potentials. How the L/d-ratio develops and what determines this unusual myelination pattern is unclear. Here we describe a gradual developmental transition from very simple to complex, mature nodes of Ranvier on globular bushy cell axons during a 2-week period starting at postnatal day P6/7. The molecular composition of nodes matured successively along the axons from somata to synaptic terminals with morphologically and molecularly mature nodes appearing almost exclusively after hearing onset. Internodal distances are initially coherent with the canonical L/d-ratio of ~100. Several days after hearing onset, however, an over-proportional increase in axon caliber occurs in cells signaling low-frequency sounds which alters their L/d ratio to ~60. Hence, oligodendrocytes initially myelinating axons according to their transient axon caliber but a subsequent differential axon thickening after hearing onset results in the unusual myelination pattern.


Subject(s)
Axons , Neurons , Action Potentials/physiology , Axons/physiology , Presynaptic Terminals , Oligodendroglia , Myelin Sheath/physiology
5.
Arthropod Struct Dev ; 75: 101285, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37393782

ABSTRACT

Among species of the spear-winged flies (Lonchopteridae) there is remarkable variation in sperm size, with some species producing giant spermatozoa. With a length of 7500 µm and a width of 1.3 µm the spermatozoon of Lonchoptera fallax ranks among the largest known to date. In the present study body size, testis size, sperm size, and spermatid number per bundle and per testis were examined across 11 Lonchoptera species. Results are discussed in terms of how these characters are related with each other and how their evolution affects the resource allocation amongst spermatozoa. Based on some discrete morphological characters and a molecular tree derived from DNA barcodes a phylogenetic hypothesis of the genus Lonchoptera is proposed. The occurrence of giant spermatozoa in Lonchopteridae is compared to convergent occurrences reported in other taxa.


Subject(s)
Diptera , Male , Animals , Phylogeny , Semen , Spermatozoa
6.
Plant Biotechnol J ; 21(6): 1240-1253, 2023 06.
Article in English | MEDLINE | ID: mdl-36807472

ABSTRACT

Rapid adaptation of weeds to herbicide applications in agriculture through resistance development is a widespread phenomenon. In particular, the grass Alopecurus myosuroides is an extremely problematic weed in cereal crops with the potential to manifest resistance in only a few generations. Target-site resistances (TSRs), with their strong phenotypic response, play an important role in this rapid adaptive response. Recently, using PacBio's long-read amplicon sequencing technology in hundreds of individuals, we were able to decipher the genomic context in which TSR mutations occur. However, sequencing individual amplicons are costly and time-consuming, thus impractical to implement for other resistance loci or applications. Alternatively, pool-based approaches overcome these limitations and provide reliable allele frequencies, although at the expense of not preserving haplotype information. In this proof-of-concept study, we sequenced with PacBio High Fidelity (HiFi) reads long-range amplicons (13.2 kb), encompassing the entire ACCase gene in pools of over 100 individuals, and resolved them into haplotypes using the clustering algorithm PacBio amplicon analysis (pbaa), a new application for pools in plants and other organisms. From these amplicon pools, we were able to recover most haplotypes from previously sequenced individuals of the same population. In addition, we analysed new pools from a Germany-wide collection of A. myosuroides populations and found that TSR mutations originating from soft sweeps of independent origin were common. Forward-in-time simulations indicate that TSR haplotypes will persist for decades even at relatively low frequencies and without selection, highlighting the importance of accurate measurement of TSR haplotype prevalence for weed management.


Subject(s)
Acetyl-CoA Carboxylase , Herbicide Resistance , Poaceae , Acetyl-CoA Carboxylase/genetics , Agriculture , Gene Frequency/genetics , Haplotypes/genetics , Herbicide Resistance/genetics , Herbicides/pharmacology , Mutation , Poaceae/genetics
7.
Int J Mol Sci ; 23(11)2022 Jun 06.
Article in English | MEDLINE | ID: mdl-35683031

ABSTRACT

Much of plant development depends on cell-to-cell redistribution of the plant hormone auxin, which is facilitated by the plasma membrane (PM) localized PIN FORMED (PIN) proteins. Auxin export activity, developmental roles, subcellular trafficking, and polarity of PINs have been well studied, but their structure remains elusive besides a rough outline that they contain two groups of 5 alpha-helices connected by a large hydrophilic loop (HL). Here, we focus on the PIN1 HL as we could produce it in sufficient quantities for biochemical investigations to provide insights into its secondary structure. Circular dichroism (CD) studies revealed its nature as an intrinsically disordered protein (IDP), manifested by the increase of structure content upon thermal melting. Consistent with IDPs serving as interaction platforms, PIN1 loops homodimerize. PIN1 HL cytoplasmic overexpression in Arabidopsis disrupts early endocytic trafficking of PIN1 and PIN2 and causes defects in the cotyledon vasculature formation. In summary, we demonstrate that PIN1 HL has an intrinsically disordered nature, which must be considered to gain further structural insights. Some secondary structures may form transiently during pairing with known and yet-to-be-discovered interactors.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Intrinsically Disordered Proteins , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Biological Transport , Indoleacetic Acids/metabolism , Intrinsically Disordered Proteins/genetics , Intrinsically Disordered Proteins/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Plant Roots/metabolism
8.
J Exp Biol ; 225(1)2022 01 01.
Article in English | MEDLINE | ID: mdl-34904652

ABSTRACT

Modern bony fishes possess a high morphological diversity in their auditory structures and auditory capabilities. Yet, how auditory structures such as the otoliths in the inner ears and the swim bladder work together remains elusive. Gathering experimental evidence on the in situ motion of fish auditory structures while avoiding artifacts caused by surgical exposure of the structures has been challenging for decades. Synchrotron radiation-based tomography with high spatio-temporal resolution allows the study of morphofunctional issues non-invasively in an unprecedented way. We therefore aimed to develop an approach that characterizes the moving structures in 4D (=three spatial dimensions+time). We designed a miniature standing wave tube-like setup to meet both the requirements of tomography and those of tank acoustics. With this new setup, we successfully visualized the motion of isolated otoliths and the auditory structures in zebrafish (Danio rerio) and glass catfish (Kryptopterus vitreolus).


Subject(s)
Hearing , Zebrafish , Animals , Otolithic Membrane , Sound , Tomography
9.
Sci Rep ; 11(1): 297, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33432052

ABSTRACT

Biofluorescence is widespread in the natural world, but only recently discovered in terrestrial vertebrates. Here, we report on the discovery of iridophore-based, neon-green flourescence in the gecko Pachydactylus rangei, localised to the skin around the eyes and along the flanks. The maximum emission of the fluorescence is at a wavelength of 516 nm in the green spectrum (excitation maximum 465 nm, blue) with another, smaller peak at 430 nm. The fluorescent regions of the skin show large numbers of iridophores, which are lacking in the non-fluorescent parts. Two types of iridophores are recognized, fluorescent iridophores and basal, non-fluorescent iridophores, the latter of which might function as a mirror, amplifying the omnidirectional fluorescence. The strong intensity of the fluorescence (quantum yield of 12.5%) indicates this to be a highly effective mechanism, unique among tetrapods. Although the fluorescence is associated with iridophores, the spectra of emission and excitation as well as the small Stokes shifts argue against guanine crystals as its source, but rather a rigid pair of fluorophores. Further studies are necessary to identify their morphology and chemical structures. We hypothesise that this nocturnal gecko uses the neon-green fluorescence, excited by moonlight, for intraspecific signalling in its open desert habitat.

10.
Arthropod Struct Dev ; 60: 101004, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33227643

ABSTRACT

Lonchoptera lutea males produce giant spermatozoa that are more than 2000 µm long and 1.4 µm wide. Unlike the typical brachyceran spermatozoon, they have a highly asymmetrical cross-section with only a single, albeit very large, mitochondrial derivative and a pair of massive accessory bodies, one of which extends throughout the entire length of the sperm tail. The accessory bodies consist of an electron-dense matrix in which numerous peculiar electron-lucid substructures are embedded. In the mated female, the giant spermatozoa are found inside two tubular spermathecae which are also extremely long, measuring 4000 µm or more.


Subject(s)
Diptera/cytology , Spermatozoa/cytology , Animals , Diptera/ultrastructure , Male , Microscopy, Electron, Transmission , Spermatozoa/ultrastructure , X-Ray Microtomography
11.
J Neurosci ; 41(2): 269-283, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33208467

ABSTRACT

Neurons in the medial superior olive (MSO) detect 10 µs differences in the arrival times of a sound at the two ears. Such acuity requires exquisitely precise integration of binaural synaptic inputs. There is substantial understanding of how neuronal phase locking of afferent MSO structures, and MSO membrane biophysics subserve such high precision. However, we still lack insight into how the entirety of excitatory inputs is integrated along the MSO dendrite under sound stimulation. To understand how the dendrite integrates excitatory inputs as a whole, we combined anatomic quantifications of the afferent innervation in gerbils of both sexes with computational modeling of a single cell. We present anatomic data from confocal and transmission electron microscopy showing that single afferent fibers follow a single dendrite mostly up to the soma and contact it at multiple (median 4) synaptic sites, each containing multiple independent active zones (the overall density of active zones is estimated as 1.375 per µm2). Thus, any presynaptic action potential may elicit temporally highly coordinated synaptic vesicle release at tens of active zones, thereby achieving secure transmission. Computer simulations suggest that such an anatomic arrangement boosts the amplitude and sharpens the time course of excitatory postsynaptic potentials by reducing current sinks and more efficiently recruiting subthreshold potassium channels. Both effects improve binaural coincidence detection compared with single large synapses at the soma. Our anatomic data further allow for estimation of a lower bound of 7 and an upper bound of 70 excitatory fibers per dendrite.SIGNIFICANCE STATEMENT Passive dendritic propagation attenuates the amplitude of postsynaptic potentials and widens their temporal spread. Neurons in the medial superior olive, with their large bilateral dendrites, however, can detect coincidence of binaural auditory inputs with submillisecond precision, a computation that is in stark contrast to passive dendritic processing. Here, we show that dendrites can counteract amplitude attenuation and even decrease the temporal spread of postsynaptic potentials, if active subthreshold potassium conductances are triggered in temporal coordination along the whole dendrite. Our anatomic finding that axons run in parallel to the dendrites and make multiple synaptic contacts support such coordination since incoming action potentials would depolarize the dendrite at multiple sites within a brief time interval.


Subject(s)
Dendrites/physiology , Superior Olivary Complex/physiology , Synapses/physiology , Action Potentials/physiology , Animals , Computer Simulation , Excitatory Postsynaptic Potentials , Female , Gerbillinae , Male , Nerve Fibers/physiology , Neurons, Afferent/physiology , Potassium Channels/physiology , Presynaptic Terminals/physiology , Sound Localization/physiology , Synaptic Transmission , Synaptic Vesicles/physiology
12.
World Dev ; 134: 105044, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32834371

ABSTRACT

COVID-19 accentuates the case for a global, rather than an international, development paradigm. The novel disease is a prime example of a development challenge for all countries, through the failure of public health as a global public good. The COVID-19 pandemic has highlighted the falsity of any assumption that the global North has all the expertise and solutions to tackle global challenges, and has further highlighted the need for multi-directional learning and transformation in all countries towards a more sustainable and equitable world. We illustrate our argument for a global development paradigm by examining the implications of the COVID-19 pandemic across four themes or 'vignettes': global value chains, digitalisation, debt, and climate change. We conclude that development studies must adapt to a very different context from when the field emerged in the mid-20th century.

13.
PLoS One ; 15(3): e0230578, 2020.
Article in English | MEDLINE | ID: mdl-32218605

ABSTRACT

Despite the diversity in fish auditory structures, it remains elusive how otolith morphology and swim bladder-inner ear (= otophysic) connections affect otolith motion and inner ear stimulation. A recent study visualized sound-induced otolith motion; but tank acoustics revealed a complex mixture of sound pressure and particle motion. To separate sound pressure and sound-induced particle motion, we constructed a transparent standing wave tube-like tank equipped with an inertial shaker at each end while using X-ray phase contrast imaging. Driving the shakers in phase resulted in maximised sound pressure at the tank centre, whereas particle motion was maximised when shakers were driven out of phase (180°). We studied the effects of two types of otophysic connections-i.e. the Weberian apparatus (Carassius auratus) and anterior swim bladder extensions contacting the inner ears (Etroplus canarensis)-on otolith motion when fish were subjected to a 200 Hz stimulus. Saccular otolith motion was more pronounced when the swim bladder walls oscillated under the maximised sound pressure condition. The otolith motion patterns mainly matched the orientation patterns of ciliary bundles on the sensory epithelia. Our setup enabled the characterization of the interplay between the auditory structures and provided first experimental evidence of how different types of otophysic connections affect otolith motion.


Subject(s)
Air Sacs/physiology , Cichlids/physiology , Goldfish/physiology , Otolithic Membrane/physiology , Acoustic Stimulation , Air Sacs/anatomy & histology , Air Sacs/diagnostic imaging , Animals , Auditory Threshold , Cichlids/anatomy & histology , Goldfish/anatomy & histology , Hearing/physiology , Image Processing, Computer-Assisted , Otolithic Membrane/anatomy & histology , Otolithic Membrane/diagnostic imaging , Swimming , Tomography
14.
NPJ Parkinsons Dis ; 6: 5, 2020.
Article in English | MEDLINE | ID: mdl-31970287

ABSTRACT

In order to understand the influence of two dopaminergic signalling pathways, TaqIA rs1800497 (influencing striatal D2 receptor density) and Ser9Gly rs6280 (influencing the striatal D3 dopamine-binding affinity), on saccade generation and psychiatric comorbidities in Parkinson's disease, this study aimed to investigate the association of saccadic performance in hypomanic or impulsive behaviour in parkinsonian patients; besides we questioned whether variants of D2 (A1+/A1-) and D3 (B1+/B1-) receptor polymorphism influence saccadic parameters differently, and if clinical parameters or brain connectivity changes modulate this association in the nigro-caudatal and nigro-collicular tract. Initially, patients and controls were compared regarding saccadic performance and differed in the parameter duration in memory-guided saccades (MGS) and visually guided saccades (VGS) trials (p < 0.0001) and in the MGS trial (p < 0.03). We were able to find associations between hypomanic behaviour (HPS) and saccade parameters (duration, latency, gain and amplitude) for both conditions [MGS (p = 0.036); VGS (p = 0.033)], but not for impulsive behaviour. For the A1 variant duration was significantly associated with HPS [VGS (p = 0.024); MGS (p = 0.033)]. In patients with the B1 variant, HPS scores were more consistently associated with duration [VGS (p = 0.005); MGS (p = 0.015), latency [VGS (p = 0.022)]] and amplitude [MGS (p = 0.006); VGS (p = 0.005)]. The mediation analysis only revealed a significant indirect effect for amplitude in the MGS modality for the variable UPDRS-ON (p < 0.05). All other clinical scales and brain connectivity parameters were not associated with behavioural traits. Collectively, our findings stress the role of striatal D2 and D3 signalling mechanisms in saccade generation and suggest that saccadic performance is associated with the clinical psychiatric state in Parkinson's disease.

15.
J Neurophysiol ; 122(6): 2388-2413, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31619113

ABSTRACT

Neuromodulatory neurons located in the brain can influence activity in locomotor networks residing in the spinal cord or ventral nerve cords of invertebrates. How inputs to and outputs of neuromodulatory descending neurons affect walking activity is largely unknown. With the use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and immunohistochemistry, we show that a population of dorsal unpaired median (DUM) neurons descending from the gnathal ganglion to thoracic ganglia of the stick insect Carausius morosus contains the neuromodulatory amine octopamine. These neurons receive excitatory input coupled to the legs' stance phases during treadmill walking. Inputs did not result from connections with thoracic central pattern-generating networks, but, instead, most are derived from leg load sensors. In excitatory and inhibitory retractor coxae motor neurons, spike activity in the descending DUM (desDUM) neurons increased depolarizing reflexlike responses to stimulation of leg load sensors. In these motor neurons, descending octopaminergic neurons apparently functioned as components of a positive feedback network mainly driven by load-detecting sense organs. Reflexlike responses in excitatory extensor tibiae motor neurons evoked by stimulations of a femur-tibia movement sensor either are increased or decreased or were not affected by the activity of the descending neurons, indicating different functions of desDUM neurons. The increase in motor neuron activity is often accompanied by a reflex reversal, which is characteristic for actively moving animals. Our findings indicate that some descending octopaminergic neurons can facilitate motor activity during walking and support a sensory-motor state necessary for active leg movements.NEW & NOTEWORTHY We investigated the role of descending octopaminergic neurons in the gnathal ganglion of stick insects. The neurons become active during walking, mainly triggered by input from load sensors in the legs rather than pattern-generating networks. This report provides novel evidence that octopamine released by descending neurons on stimulation of leg sense organs contributes to the modulation of leg sensory-evoked activity in a leg motor control system.


Subject(s)
Ganglia, Invertebrate/physiology , Motor Neurons/physiology , Nerve Net/physiology , Neurons, Efferent/physiology , Octopamine/metabolism , Walking/physiology , Animals , Behavior, Animal/physiology , Insecta
16.
Neuroimage Clin ; 23: 101906, 2019.
Article in English | MEDLINE | ID: mdl-31254937

ABSTRACT

Basal ganglia (BG) circuitry plays a crucial role in the control of movement. Degeneration of its pathways and imbalance of dopaminergic signalling goes along with movement disorders such as Parkinson's disease. In this study, we explore the interaction of degeneration in two BG pathways (the nigro-striatal and dentato-pallidal pathway) with D2 receptor signalling to elucidate an association to motor impairment and medication response. Included in the study were 24 parkinsonian patients [male, 62 years (± 9.3 SD)] compared to 24 healthy controls [male, 63 years (± 10.2 SD)]; each participant passed through three phases of the study (i) acquisition of metadata/clinical testing, (ii) genotyping and (iii) anatomical/diffusion MRI. We report a decline in nigro-striatal (p < .003) and dentato-pallidal (p < .0001) connectivity in the patients compared to controls, which is associated with increasing motor impairment (relating to nigro-striatal, r = -0.48; p < .001 and dentato-pallidal connectivity, r = -0.36; p = .035). Given, that variations of the ANKK1 Taq1 (rs 1,800,497) allele alters dopamine D2-dependent responses, all participants were genotyped respectively. By grouping patients (and controls) according to their ANKK1 genotype, we demonstrate a link between D2 receptor signalling and decline in connectivity in both investigated pathways for the A1- variant (nigro-striatal pathway: r = -0.53; p = .012, dentato-pallidal pathway: r = -0.62; p = .0012). In patients with the A1+ variant, we only found increased brain connectivity in the dentato-pallidal pathway (r = 0.71; p = .001) correlating with increasing motor impairment, suggesting a potentially compensatory function of the cerebellum. Related to medication response carriers of the A1+ variant had a better drug effect associated with stronger brain connectivity in the nigro-striatal pathway (r = 0.54; p < .02); the A1- group had a good medication response although nigro-striatal connectivity was diminished (r = -0.38; p < .05); these results underscore differences in receptor availability between both groups in the nigro-striatal pathway. No effect onto medication response was found in the dentato-pallidal pathway (p > .05). Interplay between basal ganglia connectivity and D2 receptor availability influence the clinical presentation and medication response of parkinsonian patients. Furthermore, while current models of basal-ganglia function emphasize that balanced activity in the direct and indirect pathways is required for normal movement, our data highlight a role of the cerebellum in compensating for physiological imbalances in this respect.


Subject(s)
Axons/pathology , Corpus Striatum/pathology , Globus Pallidus/pathology , Parkinson Disease/metabolism , Parkinson Disease/pathology , Receptors, Dopamine D2/metabolism , Substantia Nigra/pathology , Aged , Corpus Striatum/diagnostic imaging , Diffusion Tensor Imaging , Globus Pallidus/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neural Pathways/diagnostic imaging , Neural Pathways/pathology , Parkinson Disease/diagnostic imaging , Parkinson Disease/physiopathology , Protein Serine-Threonine Kinases/genetics , Signal Transduction/physiology , Substantia Nigra/diagnostic imaging
17.
Cell Rep ; 27(11): 3182-3198.e9, 2019 06 11.
Article in English | MEDLINE | ID: mdl-31189104

ABSTRACT

Variations in the human FTO gene have been linked to obesity and altered connectivity of the dopaminergic neurocircuitry. Here, we report that fat mass and obesity-associated protein (FTO) in dopamine D2 receptor-expressing medium spiny neurons (D2 MSNs) of mice regulate the excitability of these cells and control their striatopallidal globus pallidus external (GPe) projections. Lack of FTO in D2 MSNs translates into increased locomotor activity to novelty, associated with altered timing behavior, without impairing the ability to control actions or affecting reward-driven and conditioned behavior. Pharmacological manipulations of dopamine D1 receptor (D1R)- or D2R-dependent pathways in these animals reveal altered responses to D1- and D2-MSN-mediated control of motor output. These findings reveal a critical role for FTO to control D2 MSN excitability, their projections to the GPe, and behavioral responses to novelty.


Subject(s)
Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Dopaminergic Neurons/metabolism , Exploratory Behavior , Locomotion , Action Potentials , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Animals , Dopaminergic Neurons/physiology , Female , Globus Pallidus/cytology , Globus Pallidus/metabolism , Globus Pallidus/physiology , Male , Mice , Receptors, Dopamine D1/genetics , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/genetics , Receptors, Dopamine D2/metabolism , Reward
18.
Biol Rev Camb Philos Soc ; 94(2): 457-482, 2019 04.
Article in English | MEDLINE | ID: mdl-30239135

ABSTRACT

Otoliths in bony fishes play an important role in the senses of balance and hearing. Otolith mass and shape are, among others, likely to be decisive factors influencing otolith motion and thus ear functioning. Yet our knowledge of how exactly these factors influence otolith motion is incomplete. In addition, experimental studies directly investigating the function of otoliths in the inner ear are scarce and yield partly conflicting results. Herein, we discuss questions and hypotheses on how otolith mass and shape, and the relationship between the sensory epithelium and overlying otolith, influence otolith motion. We discuss (i) the state-of-the-art knowledge regarding otolith function, (ii) gaps in knowledge that remain to be filled, and (iii) future approaches that may improve our understanding of the role of otoliths in ear functioning. We further link these functional questions to the evolution of solid teleost otoliths instead of numerous tiny otoconia as found in most other vertebrates. Until now, the selective forces and/or constraints driving the evolution of solid calcareous otoliths and their diversity in shape in teleosts are largely unknown. Based on a data set on the structure of otoliths and otoconia in more than 160 species covering the main vertebrate groups, we present a hypothetical framework for teleost otolith evolution. We suggest that the advent of solid otoliths may have initially been a selectively neutral 'by-product' of other key innovations during teleost evolution. The teleost-specific genome duplication event may have paved the way for diversification in otolith shape. Otolith shapes may have evolved along with the considerable diversity of, and improvements in, auditory abilities in teleost fishes. However, phenotypic plasticity may also play an important role in the creation of different otolith types, and different portions of the otolith may show different degrees of phenotypic plasticity. Future studies should thus adopt a phylogenetic perspective and apply comparative and methodologically integrative approaches, including fossil otoliths, when investigating otoconia/otolith evolution and their function in the inner ear.


Subject(s)
Fishes/anatomy & histology , Fishes/physiology , Hearing/physiology , Otolithic Membrane/physiology , Postural Balance/physiology , Adaptation, Physiological/physiology , Animals , Biological Evolution , Brain/anatomy & histology , Brain/diagnostic imaging , Ear, Inner/anatomy & histology , Ear, Inner/diagnostic imaging , Ear, Inner/physiology , Imaging, Three-Dimensional/veterinary , Otolithic Membrane/anatomy & histology , Otolithic Membrane/diagnostic imaging , X-Ray Microtomography/veterinary
19.
Cell ; 175(5): 1321-1335.e20, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30445039

ABSTRACT

Adaptation of liver to the postprandial state requires coordinated regulation of protein synthesis and folding aligned with changes in lipid metabolism. Here we demonstrate that sensory food perception is sufficient to elicit early activation of hepatic mTOR signaling, Xbp1 splicing, increased expression of ER-stress genes, and phosphatidylcholine synthesis, which translate into a rapid morphological ER remodeling. These responses overlap with those activated during refeeding, where they are maintained and constantly increased upon nutrient supply. Sensory food perception activates POMC neurons in the hypothalamus, optogenetic activation of POMC neurons activates hepatic mTOR signaling and Xbp1 splicing, whereas lack of MC4R expression attenuates these responses to sensory food perception. Chemogenetic POMC-neuron activation promotes sympathetic nerve activity (SNA) subserving the liver, and norepinephrine evokes the same responses in hepatocytes in vitro and in liver in vivo as observed upon sensory food perception. Collectively, our experiments unravel that sensory food perception coordinately primes postprandial liver ER adaption through a melanocortin-SNA-mTOR-Xbp1s axis. VIDEO ABSTRACT.


Subject(s)
Endoplasmic Reticulum/metabolism , Food Preferences , Melanocortins/pharmacology , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Animals , Female , Gene Expression Regulation , Hepatocytes/cytology , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Liver/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/metabolism , Norepinephrine/pharmacology , Phosphatidylcholines/analysis , Phosphatidylcholines/metabolism , Principal Component Analysis , Receptor, Melanocortin, Type 4/deficiency , Receptor, Melanocortin, Type 4/genetics , X-Box Binding Protein 1/genetics
20.
Mol Cell ; 69(4): 636-647.e7, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29429926

ABSTRACT

The integrated stress response (ISR) facilitates cellular adaptation to stress conditions via the common target eIF2α. During ISR, the selective translation of stress-related mRNAs often relies on alternative mechanisms, such as leaky scanning or reinitiation, but the underlying mechanism remains incompletely understood. Here we report that, in response to amino acid starvation, the reinitiation of ATF4 is not only governed by the eIF2α signaling pathway, but is also subjected to regulation by mRNA methylation in the form of N6-methyladenosine (m6A). While depleting m6A demethylases represses ATF4 reinitiation, knocking down m6A methyltransferases promotes ATF4 translation. We demonstrate that m6A in the 5' UTR controls ribosome scanning and subsequent start codon selection. Global profiling of initiating ribosomes reveals widespread alternative translation events influenced by dynamic mRNA methylation. Consistently, Fto transgenic mice manifest enhanced ATF4 expression, highlighting the critical role of m6A in translational regulation of ISR at cellular and organismal levels.


Subject(s)
Adenosine/analogs & derivatives , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/physiology , Eukaryotic Initiation Factor-2/metabolism , Peptide Chain Initiation, Translational , RNA, Messenger/genetics , Ribosomes/physiology , Stress, Physiological , 5' Untranslated Regions , Adenosine/pharmacology , Animals , Cells, Cultured , Codon, Initiator , Eukaryotic Initiation Factor-2/genetics , Fibroblasts , Gene Expression Regulation , HEK293 Cells , Humans , Mice , Mice, Transgenic , Phosphorylation , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...