Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 24221, 2021 12 20.
Article in English | MEDLINE | ID: mdl-34930930

ABSTRACT

Our brain's ability to represent vast amounts of information, such as continuous ranges of reward spanning orders of magnitude, with limited dynamic range neurons, may be possible due to normalization. Recently our group and others have shown that the sensorimotor cortices are sensitive to reward value. Here we ask if psychological affect causes normalization of the sensorimotor cortices by modulating valence and motivational intensity. We had two non-human primates (NHP) subjects (one male bonnet macaque and one female rhesus macaque) make visually cued grip-force movements while simultaneously cueing the level of possible reward if successful, or timeout punishment, if unsuccessful. We recorded simultaneously from 96 electrodes in each the following: caudal somatosensory, rostral motor, and dorsal premotor cortices (cS1, rM1, PMd). We utilized several normalization models for valence and motivational intensity in all three regions. We found three types of divisive normalized relationships between neural activity and the representation of valence and motivation, linear, sigmodal, and hyperbolic. The hyperbolic relationships resemble receptive fields in psychological affect space, where a unit is susceptible to a small range of the valence/motivational space. We found that these cortical regions have both strong valence and motivational intensity representations.


Subject(s)
Brain Mapping/methods , Hand Strength , Motivation , Reward , Sensorimotor Cortex/physiology , Action Potentials/physiology , Animals , Behavior, Animal , Electrodes , Emotions , Female , Linear Models , Macaca mulatta , Macaca radiata , Male , Motor Cortex/physiology , Movement/physiology , Neurons/physiology , Psychomotor Performance/physiology , Reaction Time/physiology , Reproducibility of Results
2.
eNeuro ; 6(3)2019.
Article in English | MEDLINE | ID: mdl-31171607

ABSTRACT

Reward modulation (M1) could be exploited in developing an autonomously updating brain-computer interface (BCI) based on a reinforcement learning (RL) architecture. For an autonomously updating RL-based BCI system, we would need a reward prediction error, or a state-value representation from the user's neural activity, which the RL-BCI agent could use to update its BCI decoder. In order to understand the multifaceted effects of reward on M1 activity, we investigated how neural spiking, oscillatory activities and their functional interactions are modulated by conditioned stimuli related reward expectation. To do so, local field potentials (LFPs) and single/multi-unit activities were recorded simultaneously and bilaterally from M1 cortices while four non-human primates (NHPs) performed cued center-out reaching or grip force tasks either manually using their right arm/hand or observed passively. We found that reward expectation influenced the strength of α (8-14 Hz) power, α-γ comodulation, α spike-field coherence (SFC), and firing rates (FRs) in general in M1. Furthermore, we found that an increase in α-band power was correlated with a decrease in neural spiking activity, that FRs were highest at the trough of the α-band cycle and lowest at the peak of its cycle. These findings imply that α oscillations modulated by reward expectation have an influence on spike FR and spike timing during both reaching and grasping tasks in M1. These LFP, spike, and spike-field interactions could be used to follow the M1 neural state in order to enhance BCI decoding (An et al., 2018; Zhao et al., 2018).


Subject(s)
Action Potentials , Brain Waves , Motor Cortex/physiology , Psychomotor Performance/physiology , Reward , Animals , Cues , Female , Hand Strength , Macaca mulatta , Macaca radiata , Male , Signal Processing, Computer-Assisted
3.
Front Neurosci ; 12: 579, 2018.
Article in English | MEDLINE | ID: mdl-30250422

ABSTRACT

Neural activity in the primary motor cortex (M1) is known to correlate with movement related variables including kinematics and dynamics. Our recent work, which we believe is part of a paradigm shift in sensorimotor research, has shown that in addition to these movement related variables, activity in M1 and the primary somatosensory cortex (S1) are also modulated by context, such as value, during both active movement and movement observation. Here we expand on the investigation of reward modulation in M1, showing that reward level changes the neural tuning function of M1 units to both kinematic as well as dynamic related variables. In addition, we show that this reward-modulated activity is present during brain machine interface (BMI) control. We suggest that by taking into account these context dependencies of M1 modulation, we can produce more robust BMIs. Toward this goal, we demonstrate that we can classify reward expectation from M1 on a movement-by-movement basis under BMI control and use this to gate multiple linear BMI decoders toward improved offline performance. These findings demonstrate that it is possible and meaningful to design a more accurate BMI decoder that takes reward and context into consideration. Our next step in this development will be to incorporate this gating system, or a continuous variant of it, into online BMI performance.

4.
Dev Eng ; 2: 99-106, 2017.
Article in English | MEDLINE | ID: mdl-29276756

ABSTRACT

BACKGROUND: Maternal mortality remains a major health challenge facing developing countries, with pre-eclampsia accounting for up to 17 percent of maternal deaths. Diagnosis requires skilled health providers and devices that are appropriate for low-resource settings. This study presents the first cost-effectiveness analysis of multiple medical devices used to diagnose pre-eclampsia in low- and middle-income countries (LMICs). METHODS: Blood pressure and proteinuria measurement devices, identified from compendia for LMICs, were included. We developed a decision tree framework to assess the cost-effectiveness of each device using parameter values that reflect the general standard of care based on a survey of relevant literature and expert opinion. We examined the sensitivity of our results using one-way and second-order probabilistic multivariate analyses. RESULTS: Because the disability-adjusted life years (DALYs) averted for each device were very similar, the results were influenced by the per-use cost ranking. The most cost-effective device combination was a semi-automatic blood pressure measurement device and visually read urine strip test with the lowest combined per-use cost of $0.2004 and an incremental cost effectiveness ratio of $93.6 per DALY gained relative to a baseline with no access to diagnostic devices. When access to treatment is limited, it is more cost-effective to improve access to treatment than to increase testing rates or diagnostic device sensitivity. CONCLUSIONS: Our findings were not sensitive to changes in device sensitivity, however they were sensitive to changes in the testing rate and treatment rate. Furthermore, our results suggest that simple devices are more cost-effective than complex devices. The results underscore the desirability of two design features for LMICs: ease of use and accuracy without calibration. Our findings have important implications for policy makers, health economists, health care providers and engineers.

5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 3064-3067, 2016 Aug.
Article in English | MEDLINE | ID: mdl-28268958

ABSTRACT

Encoding of reward valence has been shown in various brain regions, including deep structures such as the substantia nigra as well as cortical structures such as the orbitofrontal cortex. While the correlation between these signals and reward valence have been shown in aggregated data comprised of many trials, little work has been done investigating the feasibility of decoding reward valence on a single trial basis. Towards this goal, one non-human primate (macaca radiata) was trained to grip and hold a target level of force in order to earn zero, one, two, or three juice rewards. The animal was informed of the impending result before reward delivery by means of a visual cue. Neural data was recorded from primary somatosensory cortex (S1) during these experiments and firing rate histograms were created following the appearance of the visual cue and used as input to a variety of classifiers. Reward valence was decoded with high levels of accuracy from S1 both in the post-cue and post-reward periods. Additionally, the proportion of units showing significant changes in their firing rates was influenced in a predictable way based on reward valence. The existence of a signal within S1 cortex that encodes reward valence could have utility for implementing reinforcement learning algorithms for brain machine interfaces. The ability to decode this reward signal in real time with limited data is paramount to the usability of such a signal in practical applications.


Subject(s)
Psychophysics , Reward , Somatosensory Cortex/physiology , Animals , Macaca radiata , Neurons/cytology , Prefrontal Cortex/cytology , Prefrontal Cortex/physiology , Reinforcement, Psychology , Somatosensory Cortex/cytology , Substantia Nigra/cytology , Substantia Nigra/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...