Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; : e202406924, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884252

ABSTRACT

Electrochemical reduction of CO2 poses a vast potential to contribute to a defossilized industry. Despite tremendous developments within the field, mass transport limitations, carbonate salt formation, and electrode degradation mechanisms still hamper the process performance. One promising approach to tweak CO2 electrolysis beyond today's limitations is pulsed electrolysis with potential cycling between an operating and a regeneration mode. Here, we rigorously model the boundary layer at a silver electrode in pulsed operation to get profound insights into the dynamic reorganization of the electrode microenvironment. In our simulation, pulsed electrolysis leads to a significant improvement of up to six times higher CO current density and 20 times higher cathodic energy efficiency when pulsing between -1.85 and -1.05 V vs SHE compared to constant potential operation. We found that elevated reactant availability in pulsed electrolysis originates from alternating replenishment of CO2 by diffusion and not from pH-induced carbonate and bicarbonate conversion. Moreover, pulsed electrolysis substantially promotes carbonate removal from the electrode by up to 83 % compared to constant potential operation, thus reducing the risk of salt formation. Therefore, this model lays the groundwork for an accurate simulation of the dynamic boundary layer modulation, which can provide insights into manifold electrochemical conversions.

2.
ACS Appl Mater Interfaces ; 16(27): 34947-34961, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38938019

ABSTRACT

Gas diffusion layers (GDLs) are usually coated with a hydrophobic agent to achieve a delicate balance between liquid and gas phases to maximize mass transport. Yet, most GDL numerical models to date have assumed an average contact angle for all materials, thereby eliminating the possibility of studying the role of the polytetrafluoroethylene (PTFE) content. This study introduces two mixed wettability algorithms to predict the mixed wetting behavior of GDLs composed of multiple materials. The algorithms employ contact angle and distance to solid materials to determine the critical capillary pressure for each pore voxel. The application of the algorithms to the estimation of capillary pressure vs saturation curves for two GDLs, namely, a micro-computed tomography (µ-CT) reconstructed SGL 39BA GDL and a stochastically reconstructed Toray 120C GDL, showed that, in agreement with experimental data, the addition of PTFE resulted in a decrease in saturation at a given capillary pressure. For Toray-120C, the mixed wettability model was capable of reproducing experimentally observed features in the intrusion curve at low saturation that could not be reproduced with a single wettability model, providing a clear link between PTFE coverage and intrusion at low saturation. Numerical results also predicted an increased breakthrough pressure and a decrease in saturation with increasing PTFE, in agreement with experimental observations. The decreased saturation at breakthrough improves gas transport through the layer while maintaining the layer's ability to remove water. Diffusivity simulations confirm the increase in diffusivity at breakthrough with increasing PTFE, thereby providing a rationale for the addition of PTFE, as well as for the optimal amount. This study emphasizes the importance of multimaterial wetting models and calls for more detailed investigations into PTFE and ionomer distributions in GDLs and catalyst layers, respectively.

3.
ACS Appl Mater Interfaces ; 16(19): 24649-24659, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38711294

ABSTRACT

Coupling renewable electricity to reduce carbon dioxide (CO2) electrochemically into carbon feedstocks offers a promising pathway to produce chemical fuels sustainably. While there has been success in developing materials and theory for CO2 reduction, the widespread deployment of CO2 electrolyzers has been hindered by challenges in the reactor design and operational stability due to CO2 crossover and (bi)carbonate salt precipitation. Herein, we design asymmetrical bipolar membranes assembled into a zero-gap CO2 electrolyzer fed with pure water, solving both challenges. By investigating and optimizing the anion-exchange-layer thickness, cathode differential pressure, and cell temperature, the forward-bias bipolar membrane CO2 electrolyzer achieves a CO faradic efficiency over 80% with a partial current density over 200 mA cm-2 at less than 3.0 V with negligible CO2 crossover. In addition, this electrolyzer achieves 0.61 and 2.1 mV h-1 decay rates at 150 and 300 mA cm-2 for 200 and 100 h, respectively. Postmortem analysis indicates that the deterioration of catalyst/polymer-electrolyte interfaces resulted from catalyst structural change, and ionomer degradation at reductive potential shows the decay mechanism. All these results point to the future research direction and show a promising pathway to deploy CO2 electrolyzers at scale for industrial applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...