Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Bioeng ; 2023 May 20.
Article in English | MEDLINE | ID: mdl-37209384

ABSTRACT

Protein A affinity chromatography is an important step in the purification of monoclonal antibodies (mAbs) and mAb-derived biotherapeutics. While the biopharma industry has extensive expertise in the operation of protein A chromatography, the mechanistic understanding of the adsorption/desorption processes is still limited, and scaling up and scaling down can be challenging because of complex mass transfer effects in bead-based resins. In convective media, such as fiber-based technologies, complex mass transfer effects such as film and pore diffusions do not occur which facilitates the study of the adsorption phenomena in more detail and simplifies the process scale-up. In the present study, the experimentation with small-scale fiber-based protein A affinity adsorber units using different flow rates forms the basis for modeling of mAb adsorption and elution behavior. The modeling approach combines aspects of both stoichiometric and colloidal adsorption models, and an empirical part for the pH. With this type of model, it was possible to describe the experimental chromatograms on a small scale very well. An in silico scale-up could be carried out solely with the help of system and device characterization without feedstock. The adsorption model could be transferred without adaption. Although only a limited number of runs were used for modeling, the predictions of up to 37 times larger units were accurate.

2.
Nat Commun ; 11(1): 2992, 2020 06 12.
Article in English | MEDLINE | ID: mdl-32532974

ABSTRACT

Activated protein C (APC) is a plasma serine protease with antithrombotic and cytoprotective functions. Based on the hypothesis that specific inhibition of APC's anticoagulant but not its cytoprotective activity can be beneficial for hemophilia therapy, 2 types of inhibitory monoclonal antibodies (mAbs) are tested: A type I active-site binding mAb and a type II mAb binding to an exosite on APC (required for anticoagulant activity) as shown by X-ray crystallography. Both mAbs increase thrombin generation and promote plasma clotting. Type I blocks all APC activities, whereas type II preserves APC's cytoprotective function. In normal monkeys, type I causes many adverse effects including animal death. In contrast, type II is well-tolerated in normal monkeys and shows both acute and prophylactic dose-dependent efficacy in hemophilic monkeys. Our data show that the type II mAb can specifically inhibit APC's anticoagulant function without compromising its cytoprotective function and offers superior therapeutic opportunities for hemophilia.


Subject(s)
Antibodies, Monoclonal/pharmacology , Hemophilia A/prevention & control , Immunoglobulin Fab Fragments/immunology , Protein C Inhibitor/pharmacology , Protein C/antagonists & inhibitors , Animals , Antibodies, Monoclonal/classification , Antibodies, Monoclonal/immunology , Bleeding Time , Cell Membrane Permeability/drug effects , Cells, Cultured , Crystallography, X-Ray , Hemophilia A/blood , Hemorrhage/prevention & control , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/physiology , Humans , Immunoglobulin Fab Fragments/metabolism , Macaca fascicularis , Male , Protein C/chemistry , Protein C/immunology , Protein C/metabolism , Protein C Inhibitor/blood , Protein C Inhibitor/pharmacokinetics
3.
PDA J Pharm Sci Technol ; 72(6): 584-598, 2018.
Article in English | MEDLINE | ID: mdl-30030349

ABSTRACT

Chromatography resins used for purifying biopharmaceuticals are generally dedicated to a single product. In good manufacturing practice (GMP) facilities that manufacture a limited amount of any particular product, this practice can result in the resin being used for a fraction of its useful life. A methodology for extending resin reuse to multiple products is described. With this methodology, resin and column performance, product carryover, and cleaning effectiveness are continually monitored to ensure that product quality is not affected by multiproduct resin reuse (MRR). Resin and column performance is evaluated in terms of (a) system suitability parameters, such as peak-shape and transition, and height equivalent theoretical plate (HETP) data; (b) key operating parameters, such as flow rate, inlet pressure, and pressure drop across the column; and (c) process performance parameters, such as impurity profiles, product quality, and yield. Historical data are used to establish process capability limits (PCLs) for these parameters. Operation within the PCLs provides assurance that column integrity and binding capacity of the resin are not affected by MRR.Product carryover defined as the carryover of the previously processed product (A) into a dose of the subsequently processed product (B) (COA→B), should be acceptable from a predictive patient safety standpoint. A methodology for determining COA→B from first principles and setting acceptance limits for cleaning validation is described.Cleaning effectiveness is evaluated by performing a blank elution run after inter-campaign cleaning and prior to product changeover. The acceptance limits for product carryover (COA→B) are more stringent for MRR than for single-product resin reuse. Thus, the inter-campaign cleaning process should be robust enough to consistently meet the more stringent acceptance limits for MRR. Additionally, the analytical methods should be sensitive enough to adequately quantify the concentration of the previously processed product (A) and its degradants in the eluent.General considerations for designing small-scale chromatographic studies for process development are also described. These studies typically include process-cycling runs with multiple products followed by viral clearance studies with a panel of model viruses. Small-scale studies can be used to optimize cleaning parameters, predict resin performance and product quality, and estimate the number of multiproduct purification cycles that can be run without affecting product quality. The proposed methodology is intended to be broadly applicable; however, it is acknowledged that alternative approaches may be more appropriate for specific scenarios.LAY ABSTRACT: Chromatography resins used for purifying biopharmaceuticals are generally dedicated to a single product. In good manufacturing practice (GMP) facilities that make a limited amount of any particular product, this practice can result in the resin being used for a fraction of its useful life. A methodology for extending resin reuse to multiple products is described. With this methodology, resin and column performance, product carryover, and cleaning effectiveness are continually monitored to ensure that product quality is not affected by multiproduct resin reuse.General considerations for designing small-scale chromatographic studies for process development are described. These studies typically include process-cycling runs with multiple products followed by viral clearance studies with a panel of model viruses. Small-scale studies can be used to optimize cleaning parameters, predict resin performance and product quality, and estimate the number of multiproduct purification cycles that can be run without impacting product quality.The proposed methodology is intended to be broadly applicable; however, it is acknowledged that alternative approaches may be more appropriate for specific scenarios.


Subject(s)
Biological Products/standards , Chromatography/methods , Technology, Pharmaceutical/methods , Drug Industry/methods , Equipment Reuse , Recombinant Proteins/standards , Viruses/isolation & purification
4.
Nucleic Acids Res ; 32(12): 3760-70, 2004.
Article in English | MEDLINE | ID: mdl-15256541

ABSTRACT

Protein synthesis in the ribosome's large subunit occurs within an active site comprised exclusively of RNA. Mutational studies of rRNA active site residues could provide valuable insight into the mechanism of peptide bond formation, but many of these mutations cause a dominant lethal phenotype, which prevents production of the homogeneous mutant ribosomes needed for analysis. We report a general method to affinity purify in vivo assembled 50S ribosomal subunits containing lethal active site mutations via a U1A protein-binding tag inserted onto the 23S rRNA. The expected pH-dependent formation of the A2450+C2063 wobble pair has made it a potential candidate for the pH-dependent conformational change that occurs within the ribosomal active site. Using this approach, the active site A2450+C2063 pair was mutated to the isosteric, but pH-independent, G2450*U2063 wobble pair, and 50S subunits containing the mutations were affinity purified. The G*U mutation caused the adjacent A2451 to become hyper-reactive to dimethylsulfate (DMS) modification in a pH-independent manner. Furthermore, the G*U mutation decreased both the rate of peptide bond formation and the affinity of the post-translocation complex for puromycin. The reaction rate (k(pep)) was reduced approximately 200-fold for both puromycin and the natural aminoacyl-tRNA A-site substrate. The mutations also substantially altered the pH dependence of the reaction. Mutation of this base pair has significant deleterious effects upon peptidyl transferase activity, but because G*U mutation disrupts several tertiary contacts with the wobble pair, the assignment of A2450 as the active site residue with the neutral pK(a) important for the peptidyl transferase reaction cannot be fully supported or excluded based upon these data.


Subject(s)
Adenine/chemistry , Cytosine/chemistry , Peptide Chain Initiation, Translational , Peptidyl Transferases/metabolism , RNA, Ribosomal, 23S/chemistry , Ribosomes/genetics , Base Pairing , Base Sequence , Chromatography, Affinity , Escherichia coli/genetics , Guanine/chemistry , Hydrogen-Ion Concentration , Kinetics , Molecular Sequence Data , Point Mutation , RNA, Ribosomal, 23S/genetics , RNA, Ribosomal, 23S/metabolism , Ribosomes/enzymology , Uracil/chemistry
5.
J Biol Inorg Chem ; 9(4): 385-95, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15042435

ABSTRACT

In order to create a heme environment that permits biomimicry of heme-containing peroxidases, a number of new hemin-peptide complexes--hemin-2(18)-glycyl-L-histidine methyl ester (HGH), hemin-2(18)-glycyl-glycyl-L-histidine methyl ester (HGGH), and hemin-2,18-bis(glycyl-glycyl-L-histidine methyl ester) (H2GGH)--have been prepared by condensation of glycyl-L-histidine methyl ester or glycyl-glycyl-L-histidine methyl ester with the propionic side chains of hemin. Characterization by means of UV/vis- and 1H NMR spectroscopy as well as cyclic- and differential pulse voltammetry indicates the formation of five-coordinate complexes in the case of HGH and HGGH, with histidine as an axial ligand. In the case of H2GGH, a six-coordinate complex with both imidazoles coordinated to the iron center appears to be formed. However, 1H NMR of H2GGH reveals the existence of an equilibrium between low-spin six-coordinate and high-spin five-coordinate species in solution. The catalytic activity of the hemin-peptide complexes towards several organic substrates, such as p-cresol, L-tyrosine methyl ester, and ABTS, has been investigated. It was found that not only the five-coordinate HGH and HGGH complexes, but also the six-coordinate H2GGH, catalyze the oxidation of substrates by H2O2. The longer and less strained peptide arm provides the HGGH complex with a slightly higher catalytic efficiency, as compared with HGH, due to formation of more stable intermediate complexes.


Subject(s)
Heme/chemistry , Peroxidases/chemical synthesis , Catalysis , Hydrogen Peroxide/chemistry , Kinetics , Ligands , Molecular Mimicry , Oligopeptides/chemical synthesis , Oligopeptides/chemistry , Oxidation-Reduction , Peroxidases/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...