Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Tissue Eng Part A ; 30(5-6): 181-191, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37658842

ABSTRACT

There are currently no surgical procedures that effectively address the treatment of volumetric muscle loss (VML) injuries that has motivated the development of implantable scaffolding. In this study, the effectiveness of an allogenic scaffold fabricated using fibers built from the extracellular matrix (ECM) collected from muscle fibroblast cells during growth in culture was explored using a hindlimb VML injury (tibialis anterior muscle) in a rat model. Recovery outcomes (8 weeks) were explored in comparison with unrepaired controls as well previously examined allogenic scaffolds prepared from decellularized skeletal muscle (DSM) tissue (n = 9/sample group). At 8-week follow-up, we found that the repair of VML injuries using ECM fiber scaffolds in combination with an autogenic mince muscle (MM) paste significantly improved the recovery of peak contractile torque (79% ± 13% of uninjured contralateral muscle) when compared with unrepaired VML controls (57% ± 13%). Similar significant improvements were measured for muscle mass restoration (93% ± 10%) in response to ECM fiber+MM repair when compared with unrepaired VML controls (73% ± 13%). Of note, mass and contractile strength recovery outcomes for ECM fiber scaffolds were not significantly different from DSM+MM repair controls. These in vivo findings support the further exploration of cell-derived ECM fiber scaffolds as a promising strategy for the repair of VML injury with recovery outcomes that compare favorably with current tissue-sourced ECM scaffolds. Furthermore, although the therapeutic potential of ECM fibers as a treatment strategy for muscle injury was explored in this study, they could be adapted for high-throughput fabrication methods developed and routinely used by the textile industry to create a broad range of woven implants (e.g., hernia meshes) for even greater clinical impact.


Subject(s)
Muscle, Skeletal , Muscular Diseases , Rats , Animals , Muscle, Skeletal/injuries , Extracellular Matrix , Tissue Scaffolds , Muscle Fibers, Skeletal , Regeneration
2.
Sci Rep ; 13(1): 11703, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37474512

ABSTRACT

Biocompatibility and the ability to mediate the appropriate flux of ions, urea, and uremic toxins between blood and dialysate components are key parameters for membranes used in dialysis. Oxone-mediated TEMPO-oxidized cellulose nanomaterials have been demonstrated to be excellent additives in the production and tunability of ultrafiltration and dialysis membranes. In the present study, nanocellulose ionic liquid membranes (NC-ILMs) were tested in vitro and ex vivo. An increase in flux of up to two orders of magnitude was observed with increased rejection (about 99.6%) of key proteins compared to that of polysulfone (PSf) and other commercial membranes. NC-ILMs have a sharper molecular weight cut-off than other phase inversion polymeric membranes, allowing for high throughput of urea and a uremic toxin surrogate and limited passage of proteins in dialysis applications. Superior anti-fouling properties were also observed for the NC-ILMs, including a > 5-h operation time with no systemic anticoagulation in blood samples. Finally, NC-ILMs were found to be biocompatible in rat ultrafiltration and dialysis experiments, indicating their potential clinical utility in dialysis and other blood filtration applications. These superior properties may allow for a new class of membranes for use in a wide variety of industrial applications, including the treatment of patients suffering from renal disease.


Subject(s)
Renal Dialysis , Toxins, Biological , Rats , Animals , Ultrafiltration , Dialysis Solutions , Proteins , Membranes, Artificial , Urea
3.
BMC Musculoskelet Disord ; 24(1): 321, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37095469

ABSTRACT

Volumetric muscle loss overwhelms skeletal muscle's ordinarily capable regenerative machinery, resulting in severe functional deficits that have defied clinical repair strategies. In this manuscript we pair the early in vivo functional response induced by differing volumetric muscle loss tissue engineering repair strategies that are broadly representative of those explored by the field (scaffold alone, cells alone, or scaffold + cells) to the transcriptomic response induced by each intervention. We demonstrate that an implant strategy comprising allogeneic decellularized skeletal muscle scaffolds seeded with autologous minced muscle cellular paste (scaffold + cells) mediates a pattern of increased expression for several genes known to play roles in axon guidance and peripheral neuroregeneration, as well as several other key genes related to inflammation, phagocytosis, and extracellular matrix regulation. The upregulation of several key genes in the presence of both implant components suggests a unique synergy between scaffolding and cells in the early period following intervention that is not seen when either scaffolds or cells are used in isolation; a finding that invites further exploration of the interactions that could have a positive impact on the treatment of volumetric muscle loss.


Subject(s)
Muscle, Skeletal , Tissue Scaffolds , Humans , Muscle, Skeletal/physiology , Regeneration/physiology , Extracellular Matrix/metabolism , Gene Expression Profiling , Tissue Engineering/methods
4.
Membranes (Basel) ; 12(10)2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36295749

ABSTRACT

Emerging technologies in nanotechnology and biomedical engineering have led to an increase in the use of implantable biomedical devices. These devices are currently battery powered which often means they must be surgically replaced during a patient's lifetime. Therefore, there is an important need for a power source that could provide continuous, stable power over a prolonged time. Reverse electrodialysis (RED) based biopower cells have been previously used to generate continuous power from physiologically relevant fluids; however, the low salinity gradient that exists within the body limited the performance of the biopower cell. In this study, a miniaturized RED biopower cell design coupled with a salt cartridge was evaluated for boosting the salt concentration gradient supplied to RED in situ. For the salt cartridge, polysulfone (PSf) hollow fibers were prepared in-house and saturated with NaCl solutions to deliver salt and thereby enhance the concentration gradient. The effect of operational parameters including solution flow rate and cartridge salt concentration on salt transport performance was evaluated. The results demonstrated that the use of the salt cartridge was able to increase the salt concentration of the RED inlet stream by 74% which in turn generated a 3-fold increase in the open circuit voltage (OCV) of the biopower cell. This innovative adaptation of the membrane-based approach into portable power generation could help open new pathways in various biomedical applications.

5.
Cardiovasc Eng Technol ; 13(1): 1-13, 2022 02.
Article in English | MEDLINE | ID: mdl-34080171

ABSTRACT

PURPOSE: Flow phantoms are used in experimental settings to aid in the simulation of blood flow. Custom geometries are available, but current phantom materials present issues with degradability and/or mimicking the mechanical properties of human tissue. In this study, a method of fabricating custom wall-less flow phantoms from a tissue-mimicking gel using 3D printed inserts is developed. METHODS: A 3D blood vessel geometry example of a bifurcated artery model was 3D printed in polyvinyl alcohol, embedded in tissue-mimicking gel, and subsequently dissolved to create a phantom. Uniaxial compression testing was performed to determine the Young's moduli of the five gel types. Angle-independent, ultrasound-based imaging modalities, Vector Flow Imaging (VFI) and Blood Speckle Imaging (BSI), were utilized for flow visualization of a straight channel phantom. RESULTS: A wall-less phantom of the bifurcated artery was fabricated with minimal bubbles and continuous flow demonstrated. Additionally, flow was visualized through a straight channel phantom by VFI and BSI. The available gel types are suitable for mimicking a variety of tissue types, including cardiac tissue and blood vessels. CONCLUSION: Custom, tissue-mimicking flow phantoms can be fabricated using the developed methodology and have potential for use in a variety of applications, including ultrasound-based imaging methods. This is the first reported use of BSI with an in vitro flow phantom.


Subject(s)
Heart , Polyvinyl Alcohol , Arteries , Humans , Phantoms, Imaging , Ultrasonography
6.
Membranes (Basel) ; 11(1)2021 Jan 09.
Article in English | MEDLINE | ID: mdl-33435388

ABSTRACT

Wafer-enhanced electrodeionization (WE-EDI) is an electrically driven separations technology that occurs under the influence of an applied electric field and heavily depends on ion exchange resin chemistry. Unlike filtration processes, WE-EDI can be used to selectively remove ions even from high concentration systems. Because every excess ion transported increases the operating costs, the selective separation offered by WE-EDI can provide a more energy-efficient and cost-effective process, especially for highly concentrated salt solutions. This work reports the performance comparison of four commonly used cation exchange resins (Amberlite IR120 Na+, Amberlite IRP 69, Dowex MAC 3 H+, and Amberlite CG 50) and their influence on the current efficiency and selectivity for the removal of cations from a highly concentrated salt stream. The current efficiencies were high for all the resin types studied. Results also revealed that weak cation exchange resins favor the transport of the monovalent ion (Na+) while strong cation exchange resins either had no strong preference or preferred to transport the divalent ions (Ca2+ and Mg2+). Moreover, the strong cation exchange resins in powder form generally performed better in wafers than those in the bead form for the selective removal of divalent ions (selectivity > 1). To further understand the impact of particle size, resins in the bead form were ground into a powder. After grinding the strong cation resins displayed similar behavior (more consistent current efficiency and preference for transporting divalent ions) to the strong cation resins in powder form. This indicates the importance of resin size in the performance of wafers.

7.
RSC Adv ; 11(50): 31208-31218, 2021 Sep 21.
Article in English | MEDLINE | ID: mdl-35496889

ABSTRACT

Biomass upgrading - the conversion of biomass waste into value-added products - provides a possible solution to reduce global dependency on nonrenewable resources. This study investigates the possibility of green biomass upgrading for lactic acid production by electrochemically-driven degradation of glucose. Herein we report an electrooxidized copper(ii) electrode which exhibits a turnover frequency of 5.04 s-1 for glucose conversion. Chronoamperometry experiments under varied potentials, alkalinity, and electrode preparation achieved a maximum lactic acid yield of 23.3 ± 1.2% and selectivity of 31.1 ± 1.9% (1.46 V vs. RHE, 1.0 M NaOH) for a room temperature and open-to-atmosphere reaction. Comparison between reaction conditions revealed lactic acid yield depends on alkalinity and applied potential, while pre-oxidation of the copper had a negligible effect on yield. Post-reaction cyclic voltammetry studies indicated no loss in reactivity for copper(ii) electrodes after a 30 hour reaction. Finally, a mechanism dependent on solvated Cu2+ species is proposed as evidenced by similar product distributions in electrocatalytic and thermocatalytic systems.

8.
Polymers (Basel) ; 12(6)2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32549325

ABSTRACT

Recent exploration of cellulose nanomaterials has resulted in the creation of Oxone®-Mediated TEMPO-Oxidized Cellulose Nanomaterials (OTO-CNMs). These materials, when incorporated into a polymer matrix, have properties showing increased flux, decreased membrane resistance, and improved clearance, making them an ideal material for dialysis. This study is the first to focus on the implementation of OTO-CNMs into hollow fiber membranes and a comparison of these membranes for ultrafiltration and dialysis. Ultrafiltration and dialysis were performed using bovine serum albumin (BSA), lysozyme, and urea to analyze various properties of each hollow fiber membrane type. The results presented in this study provide the first quantitative evaluation of the clearance and sieving characteristics of Oxone®-Mediated TEMPO-Oxidized Cellulose-Nanomaterial-doped cellulose triacetate mixed-matrix hemodialyzers. While the cellulose nanomaterials increased flux (10-30%) in ultrafiltration mode, this was offset by increased removal of albumin. However, in dialysis mode, these materials drastically increased the mass transfer of components (50-100%), which could lead to significantly lower dialysis times for patients. This change in the performance between the two different modes is most likely due to the increased porosity of the cellulose nanomaterials.

9.
Molecules ; 25(8)2020 Apr 17.
Article in English | MEDLINE | ID: mdl-32316421

ABSTRACT

The 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) oxidation of cellulose, when mediated with Oxone® (KHSO5), can be performed simply and under mild conditions. Furthermore, the products of the reaction can be isolated into two major components: Oxone®-mediated TEMPO-oxidized cellulose nanomaterials Form I and Form II (OTO-CNM Form I and Form II). This study focuses on the characterization of the properties of OTO-CNMs. Nanoparticle-sized cellulose fibers of 5 and 16 nm, respectively, were confirmed through electron microscopy. Infrared spectroscopy showed that the most carboxylation presented in Form II. Conductometric titration showed a two-fold increase in carboxylation from Form I (800 mmol/kg) to Form II (1600 mmol/kg). OTO-CNMs showed cellulose crystallinity in the range of 64-68% and crystallite sizes of 1.4-3.3 nm, as shown through XRD. OTO-CNMs show controlled variability in hydrophilicity with contact angles ranging from 16 to 32°, within or below the 26-47° reported in the literature for TEMPO-oxidized CNMs. Newly discovered OTO-CNM Form II shows enhanced hydrophilic properties as well as unique crystallinity and chemical functionalization in the field of bio-sourced material and nanocomposites.


Subject(s)
Cellulose, Oxidized/chemistry , Nanostructures/chemistry , Piperidines/chemistry , Sulfuric Acids/chemistry , Densitometry , Hydrophobic and Hydrophilic Interactions , Nanostructures/ultrastructure , Spectroscopy, Fourier Transform Infrared , Tensile Strength , X-Ray Diffraction
10.
Appl Biochem Biotechnol ; 191(2): 824-837, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31872336

ABSTRACT

The development of low fouling membranes to minimize protein adsorption has relevance in various biomedical applications. Here, electrically neutral peptoids containing 2-methoxyethyl glycine (NMEG) side chains were attached to polysulfone hollow fiber membranes via polydopamine. The number of side chains and grafting density were varied to determine the effect on coating properties and the ability to prevent fouling. NMEG peptoid coatings have high hydrophilicity compared to unmodified polysulfone membranes. The extent of biofouling was evaluated using bovine serum albumin, as well as platelet adhesion. The results suggest that both the number of side chains and grafting density play a role in the surface properties that drive biofouling. Protein adsorption decreased with increasing peptoid grafting density and is lowest above a critical grafting density specific to peptoid chain length. Our findings show that the optimization of grafting density and hydration of the surface are important factors for achieving the desired antifouling performance.


Subject(s)
Membranes, Artificial , Peptoids/chemistry , Polymers/chemistry , Sulfones/chemistry , Adsorption , Biofouling/prevention & control , Blood Platelets , Indoles , Serum Albumin, Bovine/chemistry , Surface Properties
11.
J Vis Exp ; (144)2019 02 02.
Article in English | MEDLINE | ID: mdl-30774136

ABSTRACT

Engineered scaffolds derived from extracellular matrix (ECM) have driven significant interest in medicine for their potential in expediting wound closure and healing. Extraction of extracellular matrix from fibrogenic cell cultures in vitro has potential for generation of ECM from human- and potentially patient-specific cell lines, minimizing the presence of xenogeneic epitopes which has hindered the clinical success of some existing ECM products. A significant challenge in in vitro production of ECM suitable for implantation is that ECM production by cell culture is typically of relatively low yield. In this work, protocols are described for the production of ECM by cells cultured within sacrificial hollow fiber membrane scaffolds. Hollow fiber membranes are cultured with fibroblast cell lines in a conventional cell medium and dissolved after cell culture to yield continuous threads of ECM. The resulting ECM fibers produced by this method can be decellularized and lyophilized, rendering it suitable for storage and implantation.


Subject(s)
Extracellular Matrix/metabolism , Tissue Engineering/methods , Cells, Cultured , Humans
12.
J Biomech ; 80: 121-128, 2018 10 26.
Article in English | MEDLINE | ID: mdl-30253873

ABSTRACT

BACKGROUND: Unsuccessful recanalization attempts in stroke patients have been associated with fibrin-rich thromboemboli linking retrieval mechanism performance and clot composition. To continue development of stroke retrieval mechanisms, the material properties of cerebral thromboemboli must be replicated; however, current methods for emboli analog formation lack quantitative measurements for both material stiffness and composition of cerebral thromboemboli. This study investigates emboli analog (EA) formation to mimic the material stiffness and composition of cerebral thromboemboli to develop new retrieval mechanisms. METHODS: To induce static and dynamic environments for clot replication, a 9:1 ratio of porcine whole blood and 2.45% calcium chloride remained stationary or rotated at 34, 50 and 80 RPM. Histology and a custom MATLAB code provided composition analysis results. Likewise, quantitative results from biomechanical testing were obtained for direct comparison of the material stiffness of cerebral thromboemboli. RESULTS: Fibrin/platelet content as well as material stiffness increased due to increasing rotational speed. Approximately 11% of the biomechanical testing results exhibited nonlinearity after an initial yield point, of which 60% were from statically formed EAs. Those formed at 50 RPM were most similar in material stiffness to thromboemboli extracted from carotid endarterectomy (CEA) procedures (p = 0.97). CONCLUSIONS: The dynamically formed EAs may be altered to obtain a range of fibrin/platelet to erythrocyte ratios. The proposed methodology for EA formation offers a platform for continued development of retrieval mechanism prototypes.


Subject(s)
Stroke , Thromboembolism , Animals , Blood Platelets , Erythrocytes , Fibrin , Swine
13.
Biomed Mater ; 13(1): 015023, 2017 12 28.
Article in English | MEDLINE | ID: mdl-28855424

ABSTRACT

The therapeutic potential of biological scaffolds as adjuncts to synthetic polymers motivates the engineering of fibers formed using the extracellular matrix (ECM) secreted by cells. To capture the ECM secreted by cells during in vitro culture, a solvent degradable hollow fiber membrane (HFM) was created and utilized as a cell culture platform. NIH/3T3 fibroblasts were injected into the narrow (0.986 ± 0.042 mm) lumina of mesoporous polysulfone HFMs and maintained in culture for up to 3 weeks. Following cell culture, HFMs were dissolved using N-methyl-2-pyrrolidone and the accumulated ECM was collected. The ECM retained the filamentous dimensions of the HFM lumen. The process yielded up to 0.89 ± 0.20 mg of ECM for every mm of HFM dissolved. Immunofluorescence, second-harmonic generation microscopy, and tandem mass spectrometry indicated the presence of an array of ECM constituents, including collagen, fibronectin, and proteoglycans, while FTIR spectra suggested thorough HFM material dissolution. Isolated ECM fibers, although fragile, were amenable to handling and exhibited an average elastic modulus of 34.6 ± 15.3 kPa, ultimate tensile strength of 5.2 ± 2.2 kPa, and elongation-at-break of 29% ± 18%. ECM fibers consisted of an interconnected yet porous (32.7% ± 5.8% open space) network which supported the attachment and in vitro proliferation of mammalian cells. ECM fibers were similarly synthesized using muscle and astrocyte cells, suggesting process robustness across different cell types. Ultimately, these ECM fibers could be utilized as an alternative to synthetics for the manufacture of woven meshes targeting wound healing or regenerative medicine applications.


Subject(s)
Biocompatible Materials/chemistry , Extracellular Matrix/chemistry , Fibroblasts/metabolism , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Animals , Astrocytes/metabolism , Collagen/metabolism , Fibroblasts/cytology , Fibronectins/metabolism , Mice , Muscles/metabolism , NIH 3T3 Cells , Pressure , Spectroscopy, Fourier Transform Infrared , Wound Healing
14.
Colloids Surf B Biointerfaces ; 149: 23-29, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27716528

ABSTRACT

Biofouling is a persistent problem for membranes exposed to blood or other complex biological fluids, affecting surface structure and hindering performance. In this study, a peptoid with 2-methoxyethyl (NMEG5) side chains was immobilized on polysulfone hollow fiber membranes to prevent protein fouling. The successful attachment of NMEG5 to the polysulfone surface was confirmed by X-ray photoelectron spectroscopy and an increase in hydrophilicity was confirmed by contact angle analysis. The NMEG5-modified surface was found to resist fouling with bovine serum albumin, lysozyme, and adsorbed significantly less fibrinogen as compared with other published low-fouling surfaces. Due to the low fouling nature and increased biocompatibility of the NMEG5 coated membranes, they have potential applicability in numerous biomedical applications including artificial lungs and hemodialysis.


Subject(s)
Biofouling/prevention & control , Peptidomimetics/chemical synthesis , Polymers/chemistry , Sulfones/chemistry , Adsorption/drug effects , Alkylation , Fibrinogen/chemistry , Hydrophobic and Hydrophilic Interactions , Membranes, Artificial , Muramidase/chemistry , Peptidomimetics/pharmacology , Photoelectron Spectroscopy , Polymers/pharmacology , Serum Albumin, Bovine/chemistry , Sulfones/pharmacology , Surface Properties
15.
Biotechnol Prog ; 30(4): 784-9, 2014.
Article in English | MEDLINE | ID: mdl-24799463

ABSTRACT

This study examined the potential for waste product alga, Ulva lactuca, to serve as a media component for recombinant protein production in Escherichia coli. To facilitate this investigation, U. lactuca harvested from Jamaica Bay was dried, and nutrients acid extracted for use as a growth media. The E. coli cell line BL21(DE3) was used to assess the effects on growth and production of recombinant green fluorescent protein (GFP). This study showed that media composed of acid extracts without further nutrient addition maintained E. coli growth and recombinant protein production. Extracts made from dried algae lots less than six-months-old were able to produce two-fold more GFP protein than traditional Lysogeny Broth media.


Subject(s)
Biological Products/metabolism , Recombinant Proteins/biosynthesis , Ulva/metabolism , Waste Products , Culture Media/metabolism , Escherichia coli/genetics , Green Fluorescent Proteins/metabolism , Recombinant Proteins/genetics , Ulva/chemistry
16.
Langmuir ; 27(12): 7799-805, 2011 Jun 21.
Article in English | MEDLINE | ID: mdl-21619008

ABSTRACT

Dynamic and equilibrium thermal behavior of plasmon-heated gold/silica capillary nanocomposite during evaporative cooling by water or butanol is accurately described at centimeter length scales by continuum optoplasmonic thermodynamics for continuous-wave laser irradiation of 15-50 mW. Gold nanoparticles randomly distributed on the capillary via electroless plating exhibited a composite extinction cross section of 66.74 ± 0.72% of the area of the laser spot, more than 2-fold larger than the physical cross-section of the AuNPs. The extinction cross-section of the AuNPs capillary was invariant for incident laser powers of 15-150 mW and was reduced slightly in the presence of butanol and water due to absorption peak-shifting to lower energies. Introducing composite thermal parameters into the optoplasmonic thermodynamic relation extended its ability to predict heat transfer to laser powers of 100 and 150 mW for water and butanol, respectively. Nonlinear behaviors such as exponential thermal profiles caused by limited thermal conductivity and film boiling are identified at higher laser powers and prevent further extension of the relation. Mathematical reduction of temperature and time variables of the mathematical description shows it accounts for all measured thermodynamic effects when the aforementioned nonlinear behaviors are not present. This confirms that extraordinary thermal transport observed in some nanocomposites are absent for AuNP/silica systems in the given ranges, which allows a macroscale, continuum approach to describe thermal transport.

SELECTION OF CITATIONS
SEARCH DETAIL
...