Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans A Math Phys Eng Sci ; 362(1816): 493-524, 2004 Mar 15.
Article in English | MEDLINE | ID: mdl-15306505

ABSTRACT

The Maxwell eigenvalue problem is known to pose difficulties for standard numerical methods, predominantly due to its large null space. As an alternative to the widespread use of Galerkin finite-element methods based on curl-conforming elements, we propose to use high-order nodal elements in a discontinuous element scheme. We consider both two- and three-dimensional problems and show the former to be without problems in a wide range of cases. Numerical experiments suggest the validity of this for general problems. For the three-dimensional eigenproblem, we encounter difficulties with a naive formulation of the scheme and propose minor modifications, intimately related to the discontinuous nature of the formulation, to overcome these concerns. We conclude by connecting the findings to time domain solution of Maxwell's equations. The discussion, analysis, and numerous computational experiments suggest that using discontinuous element schemes for solving Maxwell's equation in the frequency- or time-domain present a high-order accurate, efficient and robust alternative to classical Galerkin finite-element methods.

2.
J Opt Soc Am A Opt Image Sci Vis ; 21(5): 757-69, 2004 May.
Article in English | MEDLINE | ID: mdl-15139428

ABSTRACT

A boundary variation method for the forward modeling of multilayered diffraction optics is presented. The approach permits fast and high-order accurate modeling of periodic transmission optics consisting of an arbitrary number of materials and interfaces of general shape subject to plane-wave illumination or, by solving a sequence of problems, illumination by beams. The key elements of the algorithm are discussed, as are details of an efficient implementation. Numerous comparisons with exact solutions and highly accurate direct solutions confirm the accuracy, the versatility, and the efficiency of the proposed method.

3.
Ultrasonics ; 40(1-8): 177-80, 2002 May.
Article in English | MEDLINE | ID: mdl-12159927

ABSTRACT

The use of ultrasound to measure elastic field parameters as well as to detect cracks in solid materials has received much attention, and new important applications have been developed recently, e.g., the use of laser generated ultrasound in non-destructive evaluation (NDE). To model such applications requires a realistic calculation of field parameters in complex geometries with discontinuous, layered materials. In this paper we present an approach for solving the elastic wave equation in complex geometries with discontinuous layered materials. The approach is based on a pseudospectral elastodynamic formulation, giving a direct solution of the time-domain elastodynamic equations. A typical calculation is performed by decomposing the global computational domain into a number of subdomains. Every subdomain is then mapped on a unit square using transfinite blending functions and spatial derivatives are calculated efficiently by a Chebyshev collocation scheme. This enables that the elastodynamic equations can be solved within spectral accuracy, and furthermore, complex interfaces can be approximated smoothly, hence avoiding staircasing. A global solution is constructed from the local solutions by means of characteristic variables. Finally, the global solution is advanced in time using a fourth order Runge-Kutta scheme. Examples of field prediction in discontinuous solids with complex geometries are given and related to ultrasonic NDE.

4.
J Opt Soc Am A Opt Image Sci Vis ; 18(11): 2876-85, 2001 Nov.
Article in English | MEDLINE | ID: mdl-11688877

ABSTRACT

A boundary variation method for the fast and accurate modeling of three-dimensional waveguide grating couplers is presented. The algorithm is verified by detailed comparisons with the results of a rigorous spectral collocation method, showing excellent agreement. Examples of the modeling of large waveguide grating couplers are given to illustrate the applicability and versatility of the method.

SELECTION OF CITATIONS
SEARCH DETAIL
...