Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am Nat ; 196(1): 87-100, 2020 07.
Article in English | MEDLINE | ID: mdl-32552102

ABSTRACT

Animals frequently evolve unique suites of traits on islands, but whether plants evolve comparable island syndromes remains unresolved. Here, we test the prediction on the basis of natural history observations that insect-pollinated plants evolve smaller flowers on islands than on mainland communities. We examined 556 plant species representing 136 phylogenetically independent contrasts between island and mainland sister taxa. We focused on endemic taxa originating from the Americas associated with seven tropical and subtropical islands of the Pacific Ocean. Contrary to conventional wisdom, flowers were not on average smaller on islands than on the mainland. On specific archipelagos (the Galápagos Islands and Revillagigedo Islands), however, island taxa did evolve smaller flowers. Divergence in flower size between island and mainland taxa also varied among taxonomic families, such that some plant families evolved smaller flowers on islands, other families evolved larger flowers on islands, and some families exhibited no divergence in flower size between island and mainland taxa. Overall, our results show that there is no general island syndrome for flower size, but instead that the evolution of floral morphology is complex and context dependent, depending on variation among islands and plant families. Our results also suggest that if island floras are typically dominated by small flowered species, as suggested by natural history observations, then ecological filtering is a more likely explanation of this pattern than evolutionary divergence postcolonization. We propose future studies that could disentangle the relative roles of ecological filtering and evolution in the distribution of floral traits on islands.


Subject(s)
Biological Evolution , Flowers/anatomy & histology , Magnoliopsida/anatomy & histology , Chile , Costa Rica , Ecuador , Hawaii , Islands , Mexico , Pacific Ocean , Phenotype
2.
Ann Bot ; 118(1): 135-48, 2016 07.
Article in English | MEDLINE | ID: mdl-27240855

ABSTRACT

UNLABELLED: • BACKGROUND AND AIMS: Animal-pollinated angiosperms have evolved a variety of signalling mechanisms to attract pollinators. Floral scent is a key component of pollinator attraction, and its chemistry modulates both pollinator behaviour and the formation of plant-pollinator networks. The neotropical orchid genus Gongora exhibits specialized pollinator associations with male orchid bees (Euglossini). Male bees visit orchid flowers to collect volatile chemical compounds that they store in hind-leg pouches to use subsequently during courtship display. Hence, Gongora floral scent compounds simultaneously serve as signalling molecules and pollinator rewards. Furthermore, because floral scent acts as the predominant reproductive isolating barrier among lineages, it has been hypothesized that chemical traits are highly species specific. A comparative analysis of intra- and inter-specific variation of floral scent chemistry was conducted to investigate the evolutionary patterns across the genus. • METHODS: Gas chromatography-mass spectrometry (GC-MS) was used to analyse the floral scent of 78 individuals belonging to 28 different species of Gongora from two of the three major lineages sampled across the neotropical region. Multidimensional scaling and indicator value analyses were implemented to investigate the patterns of chemical diversity within and among taxonomic groups at various geographic scales. Additionally, pollinator observations were conducted on a sympatric community of Gongora orchids exhibiting distinct floral scent phenotypes. • KEY RESULTS: A total of 83 floral volatiles, mainly terpenes and aromatic compounds, were detected. Many of the identified compounds are common across diverse angiosperm families (e.g. cineole, eugenol, ß-ocimene, ß-pinene and terpinen-4-ol), while others are relatively rare outside euglossine bee-pollinated orchid lineages. Additionally, 29 volatiles were identified that are known to attract and elicit collection behaviour in male bees. Floral scent traits were less variable within species than between species, and the analysis revealed exceptional levels of cryptic diversity. Gongora species were divided into 15 fragrance groups based on shared compounds. Fragrance groups indicate that floral scent variation is not predicted by taxonomic rank or biogeographic region. • CONCLUSIONS: Gongora orchids emit a diverse array of scent molecules that are largely species specific, and closely related taxa exhibit qualitatively and quantitatively divergent chemical profiles. It is shown that within a community, Gongora scent chemotypes are correlated with near non-overlapping bee pollinator assemblies. The results lend support to the hypothesis that floral scent traits regulate the architecture of bee pollinator associations. Thus, Gongora provides unique opportunities to examine the interplay between floral traits and pollinator specialization in plant-pollinator mutualisms.


Subject(s)
Bees , Flowers/chemistry , Orchidaceae/chemistry , Orchidaceae/physiology , Volatile Organic Compounds/analysis , Animals , Biodiversity , Biological Evolution , Colombia , Costa Rica , Flowers/physiology , Gas Chromatography-Mass Spectrometry , Odorants/analysis , Pollination , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...