Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; 58(48): 6841-6844, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35616139

ABSTRACT

Porous aromatic frameworks (PAFs) are attractive materials for applications where high surface area and material stability govern performance. Most of the highest surface area PAFs are synthesized using poorly scalable and costly methods involving super-stoichiometric bis(1,5-cyclooctadiene)Nickel(0) (Ni(COD)2). This communication describes a general approach for the synthesis of high surface area PAFs that does not use isolated Ni(COD)2. The method is general to at least seven microporous polymers and can be conducted on gram scales without the use of an inert atmosphere glovebox. This work is expected to improve the synthetic accessibility of these materials.

2.
ACS Chem Neurosci ; 12(23): 4438-4448, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34672533

ABSTRACT

Respiratory dysfunction is a major cause of death in people with spinal cord injury (SCI). A remaining unsolved problem in treating SCI is the intolerable side effects of the drugs to patients. In a significant departure from conventional targeted nanotherapeutics to overcome the blood-brain barrier (BBB), this work pursues a drug-delivery approach that uses neural tracing retrograde transport proteins to bypass the BBB and deliver an adenosine A1 receptor antagonist drug, 1,3-dipropyl-8-cyclopentyl xanthine, exclusively to the respiratory motoneurons in the spinal cord and the brainstem. A single intradiaphragmatic injection at one thousandth of the native drug dosage induces prolonged respiratory recovery in a hemisection animal model. To translate the discovery into new treatments for respiratory dysfunction, we carry out this study to characterize the purity and quality of synthesis, stability, and drug-release properties of the neural tracing protein (wheat germ agglutinin chemically conjugated to horseradish peroxidase)-coupled nanoconjugate. We show that the batch-to-batch particle size and drug dosage variations are less than 10%. We evaluate the nanoconjugate size against the spatial constraints imposed by transsynaptic transport from pre to postsynaptic neurons. We determine that the nanoconjugate formulation is capable of sustained drug release lasting for days at physiologic pH, a prerequisite for long-distance transport of the drug from the diaphragm muscle to the brainstem. We model the drug-release profiles using a first-order reaction model and the Noyes-Whitney diffusion model. We confirm via biological electron microscopy that the nanoconjugate particles do not accumulate in the tissues at the injection site. We define the nanoconjugate storage conditions after monitoring the solution dispersion stability under various conditions for 4 months. This study supports further development of neural tracing protein-enabled nanotherapeutics for treating respiratory problems associated with SCI.


Subject(s)
Pharmaceutical Preparations , Spinal Cord Injuries , Animals , Drug Liberation , Humans , Motor Neurons , Nanoconjugates , Purinergic P1 Receptor Antagonists/therapeutic use , Spinal Cord Injuries/drug therapy
3.
Nanoscale ; 11(14): 6886-6896, 2019 Apr 04.
Article in English | MEDLINE | ID: mdl-30912780

ABSTRACT

A new approach to the solution-phase synthesis of manganese antimonide nanoparticles was developed to reduce competitive oxide formation by exploitation of sodium borohydride (NaBH4) (0.53-2.64 mmol) as a sacrificial reductant. However, in the presence of near-stoichiometric precursor amounts of manganese carbonyl and triphenyl antimony, the introduction of NaBH4 results in a different growth mechanism, Solution-Solid-Solid (SSS), leading to tadpole-shaped manganese antimonide nanoparticles with antimony-rich heads and stoichiometric manganese antimonide tails. We hypothesize that a solid antimony-rich manganese antimonide cluster acts as an initiator to tail growth in solution. Notably, the length of the tail correlated with the amount of NaBH4 used. Interestingly, these anisotropic particles can be transformed progressively into spherical-shaped nanoparticles upon the addition of excess manganese carbonyl. The anisotropic manganese antimonide particles possess saturation magnetizations ca. twenty times higher than that reported for MnSb nanoparticles prepared without NaBH4, attributed to limitation of oxidation.

SELECTION OF CITATIONS
SEARCH DETAIL
...